These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 26720328)

  • 1. Physiological and functional diversity of phenol degraders isolated from phenol-grown aerobic granules: Phenol degradation kinetics and trichloroethylene co-metabolic activities.
    Zhang Y; Tay JH
    J Environ Manage; 2016 Mar; 169():34-45. PubMed ID: 26720328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules.
    Zhang Y; Tay J
    J Hazard Mater; 2015 Apr; 286():204-10. PubMed ID: 25577321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rate limiting factors in trichloroethylene co-metabolic degradation by phenol-grown aerobic granules.
    Zhang Y; Tay JH
    Biodegradation; 2014 Apr; 25(2):227-37. PubMed ID: 23846132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-metabolic degradation activities of trichloroethylene by phenol-grown aerobic granules.
    Zhang Y; Tay JH
    J Biotechnol; 2012 Dec; 162(2-3):274-82. PubMed ID: 23026554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerobic degradation of trichloroethylene by co-metabolism using phenol and gasoline as growth substrates.
    Li Y; Li B; Wang CP; Fan JZ; Sun HW
    Int J Mol Sci; 2014 May; 15(5):9134-48. PubMed ID: 24857922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.
    Wang S; Yang Q; Bai Z; Wang S; Wang Y; Nowak KM
    Environ Technol; 2015; 36(1-4):115-23. PubMed ID: 25409590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerobic biodegradation of trichloroethylene and phenol co-contaminants in groundwater by a bacterial community using hydrogen peroxide as the sole oxygen source.
    Li H; Zhang SY; Wang XL; Yang J; Gu JD; Zhu RL; Wang P; Lin KF; Liu YD
    Environ Technol; 2015; 36(5-8):667-74. PubMed ID: 25220534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerobic cometabolism of trichloroethene and cis-dichloroethene with benzene and chlorinated benzenes as growth substrates.
    Elango V; Kurtz HD; Freedman DL
    Chemosphere; 2011 Jun; 84(2):247-53. PubMed ID: 21531438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological traits of bacterial strains isolated from phenol-degrading aerobic granules.
    Jiang HL; Tay ST; Maszenan AM; Tay JH
    FEMS Microbiol Ecol; 2006 Aug; 57(2):182-91. PubMed ID: 16867137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity in kinetics of trichloroethylene-degrading activities exhibited by phenol-degrading bacteria.
    Futamata H; Harayama S; Watanabe K
    Appl Microbiol Biotechnol; 2001 Mar; 55(2):248-53. PubMed ID: 11330722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates.
    Folsom BR; Chapman PJ; Pritchard PH
    Appl Environ Microbiol; 1990 May; 56(5):1279-85. PubMed ID: 2339883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique kinetic properties of phenol-degrading variovorax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture.
    Futamata H; Nagano Y; Watanabe K; Hiraishi A
    Appl Environ Microbiol; 2005 Feb; 71(2):904-11. PubMed ID: 15691947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway.
    Nelson MJ; Montgomery SO; Mahaffey WR; Pritchard PH
    Appl Environ Microbiol; 1987 May; 53(5):949-54. PubMed ID: 3606099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trichloroethylene (TCE) removal in a single pulse suspension bioreactor.
    Volcík V; Hoffmann J; Růzicka J; Sergejevová M
    J Environ Manage; 2005 Mar; 74(4):293-304. PubMed ID: 15737454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of copper on biodegradation mechanism of trichloroethylene by mixed microorganisms].
    Gao Y; Zhao T; Xing Z; He Z; Zhang L; Peng X
    Sheng Wu Gong Cheng Xue Bao; 2016 May; 32(5):621-634. PubMed ID: 29019200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerobic, phenol-induced TCE degradation in completely mixed, continuous-culture reactors.
    Coyle CG; Parkin GF; Gibson DT
    Biodegradation; 1993; 4(1):59-69. PubMed ID: 7763855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trichloroethylene aerobic cometabolism by suspended and immobilized butane-growing microbial consortia: a kinetic study.
    Frascari D; Zanaroli G; Bucchi G; Rosato A; Tavanaie N; Fraraccio S; Pinelli D; Fava F
    Bioresour Technol; 2013 Sep; 144():529-38. PubMed ID: 23896437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida.
    Chen YM; Lin TF; Huang C; Lin JC
    Chemosphere; 2008 Aug; 72(11):1671-80. PubMed ID: 18586301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance characterization of a model bioreactor for the biodegradation of trichloroethylene by Pseudomonas cepacia G4.
    Folsom BR; Chapman PJ
    Appl Environ Microbiol; 1991 Jun; 57(6):1602-8. PubMed ID: 1872599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trichloroethylene degradation by two independent aromatic-degrading pathways in Alcaligenes eutrophus JMP134.
    Harker AR; Kim Y
    Appl Environ Microbiol; 1990 Apr; 56(4):1179-81. PubMed ID: 2339875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.