These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 26720551)

  • 1. An Ambient Temperature Molten Sodium-Vanadium Battery with Aqueous Flowing Catholyte.
    Liu C; Shamie JS; Shaw LL; Sprenkle VL
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1545-52. PubMed ID: 26720551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions.
    Shamie JS; Liu C; Shaw LL; Sprenkle VL
    Sci Rep; 2015 Jun; 5():11215. PubMed ID: 26063629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Mechanism for the Reduction of Vanadyl Acetylacetonate to Vanadium Acetylacetonate for Room Temperature Flow Batteries.
    Shamie JS; Liu C; Shaw LL; Sprenkle VL
    ChemSusChem; 2017 Feb; 10(3):533-540. PubMed ID: 27863095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A room-temperature sodium rechargeable battery using an SO2-based nonflammable inorganic liquid catholyte.
    Jeong G; Kim H; Lee HS; Han YK; Park JH; Jeon JH; Song J; Lee K; Yim T; Kim KJ; Lee H; Kim YJ; Sohn HJ
    Sci Rep; 2015 Aug; 5():12827. PubMed ID: 26243052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of high-voltage bipolar redox-active organic molecules through the electronic coupling of catholyte and anolyte structures.
    Tracy JS; Horst ES; Roytman VA; Toste FD
    Chem Sci; 2022 Sep; 13(36):10806-10814. PubMed ID: 36320695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries.
    Walser-Kuntz R; Yan Y; Sigman M; Sanford MS
    Acc Chem Res; 2023 May; 56(10):1239-1250. PubMed ID: 37094181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rechargeable Zinc-Aqueous Polysulfide Battery with a Mediator-Ion Solid Electrolyte.
    Gross MM; Manthiram A
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10612-10617. PubMed ID: 29561586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetic aqueous rechargeable sodium-ion battery based on Na2 CuFe(CN)6 -NaTi2 (PO4 )3 intercalation chemistry.
    Wu XY; Sun MY; Shen YF; Qian JF; Cao YL; Ai XP; Yang HX
    ChemSusChem; 2014 Feb; 7(2):407-11. PubMed ID: 24464957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aqueous Dual-Electrolyte Full-Cell System for Improving Energy Density of Sodium-Ion Batteries.
    Zhou W; Zheng Y; Zartashia M; Shan Y; Noor H; Lou H; Hou X
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):34835-34843. PubMed ID: 35875895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Desymmetrized hexasubstituted [3]radialene anions as aqueous organic catholytes for redox flow batteries.
    Turner NA; Freeman MB; Pratt HD; Crockett AE; Jones DS; Anstey MR; Anderson TM; Bejger CM
    Chem Commun (Camb); 2020 Mar; 56(18):2739-2742. PubMed ID: 32022001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenothiazine-Based Organic Catholyte for High-Capacity and Long-Life Aqueous Redox Flow Batteries.
    Zhang C; Niu Z; Peng S; Ding Y; Zhang L; Guo X; Zhao Y; Yu G
    Adv Mater; 2019 Jun; 31(24):e1901052. PubMed ID: 30998269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical Roles of pH and Activated Carbon on the Speciation and Performance of an Archetypal Organometallic Complex for Aqueous Redox Flow Batteries.
    Burghoff A; Holubowitch NE
    J Am Chem Soc; 2024 Apr; 146(14):9728-9740. PubMed ID: 38535624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyethylene Glycol-Na
    Jiang P; Lei Z; Chen L; Shao X; Liang X; Zhang J; Wang Y; Zhang J; Liu Z; Feng J
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):28762-28768. PubMed ID: 31318190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ X-ray near-edge absorption spectroscopy investigation of the state of charge of all-vanadium redox flow batteries.
    Jia C; Liu Q; Sun CJ; Yang F; Ren Y; Heald SM; Liu Y; Li ZF; Lu W; Xie J
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17920-5. PubMed ID: 25191695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. POM Anolyte for All-Anion Redox Flow Batteries with High Capacity Retention and Coulombic Efficiency at Mild pH.
    Yang L; Hao Y; Lin J; Li K; Luo S; Lei J; Han Y; Yuan R; Liu G; Ren B; Chen J
    Adv Mater; 2022 Feb; 34(7):e2107425. PubMed ID: 34866255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte.
    Yu X; Bi Z; Zhao F; Manthiram A
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16625-31. PubMed ID: 26161547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring Carbonyl Chemistry in Non-aqueous Mg Flow Batteries.
    Qin Y; Holguin K; Fehlau D; Luo C; Gao T
    Chem Asian J; 2022 Nov; 17(21):e202200587. PubMed ID: 35994590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bio-Inspired, Heavy-Metal-Free, Dual-Electrolyte Liquid Battery towards Sustainable Energy Storage.
    Ding Y; Yu G
    Angew Chem Int Ed Engl; 2016 Apr; 55(15):4772-6. PubMed ID: 26958787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A High Rate and Stable Hybrid Li/Na-Ion Battery Based on a Hydrated Molten Inorganic Salt Electrolyte.
    Wang Z; Xu Y; Peng J; Ou M; Wei P; Fang C; Li Q; Huang J; Han J; Huang Y
    Small; 2021 Oct; 17(40):e2101650. PubMed ID: 34453487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.