These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 26720641)

  • 1. In Vivo Knee Contact Force Prediction Using Patient-Specific Musculoskeletal Geometry in a Segment-Based Computational Model.
    Ding Z; Nolte D; Kit Tsang C; Cleather DJ; Kedgley AE; Bull AM
    J Biomech Eng; 2016 Feb; 138(2):021018. PubMed ID: 26720641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electromyography-Driven Forward Dynamics Simulation to Estimate In Vivo Joint Contact Forces During Normal, Smooth, and Bouncy Gaits.
    Razu SS; Guess TM
    J Biomech Eng; 2018 Jul; 140(7):0710121-8. PubMed ID: 29164228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Influence of Component Alignment and Ligament Properties on Tibiofemoral Contact Forces in Total Knee Replacement.
    Smith CR; Vignos MF; Lenhart RL; Kaiser J; Thelen DG
    J Biomech Eng; 2016 Feb; 138(2):021017. PubMed ID: 26769446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concurrent prediction of ground reaction forces and moments and tibiofemoral contact forces during walking using musculoskeletal modelling.
    Peng Y; Zhang Z; Gao Y; Chen Z; Xin H; Zhang Q; Fan X; Jin Z
    Med Eng Phys; 2018 Feb; 52():31-40. PubMed ID: 29269224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty.
    Marra MA; Vanheule V; Fluit R; Koopman BH; Rasmussen J; Verdonschot N; Andersen MS
    J Biomech Eng; 2015 Feb; 137(2):020904. PubMed ID: 25429519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intra-Articular Knee Contact Force Estimation During Walking Using Force-Reaction Elements and Subject-Specific Joint Model.
    Jung Y; Phan CB; Koo S
    J Biomech Eng; 2016 Feb; 138(2):021016. PubMed ID: 26720762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait.
    Guess TM; Stylianou AP; Kia M
    J Biomech Eng; 2014 Feb; 136(2):021032. PubMed ID: 24389997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.
    Gerus P; Sartori M; Besier TF; Fregly BJ; Delp SL; Banks SA; Pandy MG; D'Lima DD; Lloyd DG
    J Biomech; 2013 Nov; 46(16):2778-86. PubMed ID: 24074941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces.
    Lerner ZF; DeMers MS; Delp SL; Browning RC
    J Biomech; 2015 Feb; 48(4):644-650. PubMed ID: 25595425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-joint modeling for estimation of total knee replacement contact forces during locomotion.
    Hast MW; Piazza SJ
    J Biomech Eng; 2013 Feb; 135(2):021013. PubMed ID: 23445058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A custom musculoskeletal model for estimation of medial and lateral tibiofemoral contact forces during tasks with high knee and hip flexions.
    Bedo BLS; Catelli DS; Lamontagne M; Santiago PRP
    Comput Methods Biomech Biomed Engin; 2020 Aug; 23(10):658-663. PubMed ID: 32393120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of In Vivo Knee Joint Loads Using a Global Probabilistic Analysis.
    Navacchia A; Myers CA; Rullkoetter PJ; Shelburne KB
    J Biomech Eng; 2016 Mar; 138(3):4032379. PubMed ID: 26720096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tibiofemoral joint contact forces and knee kinematics during squatting.
    Smith SM; Cockburn RA; Hemmerich A; Li RM; Wyss UP
    Gait Posture; 2008 Apr; 27(3):376-86. PubMed ID: 17583512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of medial and lateral contact force of the knee joint during normal and turning gait after total knee replacement.
    Purevsuren T; Dorj A; Kim K; Kim YH
    Proc Inst Mech Eng H; 2016 Apr; 230(4):288-97. PubMed ID: 26908641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait.
    Moissenet F; Chèze L; Dumas R
    J Biomech; 2014 Jan; 47(1):50-8. PubMed ID: 24210475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A subject-specific musculoskeletal model to predict the tibiofemoral contact forces during daily living activities.
    Zhang L; Liu G; Yan Y; Han B; Li H; Ma J; Wang X
    Comput Methods Biomech Biomed Engin; 2023 Jun; 26(8):972-985. PubMed ID: 35852103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant.
    Kim HJ; Fernandez JW; Akbarshahi M; Walter JP; Fregly BJ; Pandy MG
    J Orthop Res; 2009 Oct; 27(10):1326-31. PubMed ID: 19396858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the Level of Muscular Redundancy on the Validity of a Musculoskeletal Model.
    Moissenet F; Chèze L; Dumas R
    J Biomech Eng; 2016 Feb; 138(2):021019. PubMed ID: 26632266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of the Knee Adduction Moment and Joint Contact Force during Daily Living Activities Using Inertial Motion Capture.
    Konrath JM; Karatsidis A; Schepers HM; Bellusci G; de Zee M; Andersen MS
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30970538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing three generic musculoskeletal models to estimate the tibiofemoral reaction forces during gait and sit-to-stand tasks.
    Pelegrinelli ARM; Catelli DS; Kowalski E; Lamontagne M; Moura FA
    Med Eng Phys; 2023 Dec; 122():104074. PubMed ID: 38092489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.