These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 26721420)

  • 1. Altered myocardial metabolic adaptation to increased fatty acid availability in cardiomyocyte-specific CLOCK mutant mice.
    Peliciari-Garcia RA; Goel M; Aristorenas JA; Shah K; He L; Yang Q; Shalev A; Bailey SM; Prabhu SD; Chatham JC; Gamble KL; Young ME
    Biochim Biophys Acta; 2016 Oct; 1861(10):1579-95. PubMed ID: 26721420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence suggesting that the cardiomyocyte circadian clock modulates responsiveness of the heart to hypertrophic stimuli in mice.
    Durgan DJ; Tsai JY; Grenett MH; Pat BM; Ratcliffe WF; Villegas-Montoya C; Garvey ME; Nagendran J; Dyck JR; Bray MS; Gamble KL; Gimble JM; Young ME
    Chronobiol Int; 2011 Apr; 28(3):187-203. PubMed ID: 21452915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct regulation of myocardial triglyceride metabolism by the cardiomyocyte circadian clock.
    Tsai JY; Kienesberger PC; Pulinilkunnil T; Sailors MH; Durgan DJ; Villegas-Montoya C; Jahoor A; Gonzalez R; Garvey ME; Boland B; Blasier Z; McElfresh TA; Nannegari V; Chow CW; Heird WC; Chandler MP; Dyck JR; Bray MS; Young ME
    J Biol Chem; 2010 Jan; 285(5):2918-29. PubMed ID: 19940111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression.
    Bray MS; Shaw CA; Moore MW; Garcia RA; Zanquetta MM; Durgan DJ; Jeong WJ; Tsai JY; Bugger H; Zhang D; Rohrwasser A; Rennison JH; Dyck JR; Litwin SE; Hardin PE; Chow CW; Chandler MP; Abel ED; Young ME
    Am J Physiol Heart Circ Physiol; 2008 Feb; 294(2):H1036-47. PubMed ID: 18156197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The circadian clock within the cardiomyocyte is essential for responsiveness of the heart to fatty acids.
    Durgan DJ; Trexler NA; Egbejimi O; McElfresh TA; Suk HY; Petterson LE; Shaw CA; Hardin PE; Bray MS; Chandler MP; Chow CW; Young ME
    J Biol Chem; 2006 Aug; 281(34):24254-69. PubMed ID: 16798731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic disruption of the cardiomyocyte circadian clock differentially influences insulin-mediated processes in the heart.
    McGinnis GR; Tang Y; Brewer RA; Brahma MK; Stanley HL; Shanmugam G; Rajasekaran NS; Rowe GC; Frank SJ; Wende AR; Abel ED; Taegtmeyer H; Litovsky S; Darley-Usmar V; Zhang J; Chatham JC; Young ME
    J Mol Cell Cardiol; 2017 Sep; 110():80-95. PubMed ID: 28736261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deletion of protein tyrosine phosphatase 1B rescues against myocardial anomalies in high fat diet-induced obesity: Role of AMPK-dependent autophagy.
    Kandadi MR; Panzhinskiy E; Roe ND; Nair S; Hu D; Sun A
    Biochim Biophys Acta; 2015 Feb; 1852(2):299-309. PubMed ID: 25018087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes.
    Fukushima A; Lopaschuk GD
    Biochim Biophys Acta; 2016 Oct; 1861(10):1525-34. PubMed ID: 26996746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of circadian clock gene Clock in diabetes-induced circadian augmentation of plasminogen activator inhibitor-1 (PAI-1) expression in the mouse heart.
    Oishi K; Ohkura N; Amagai N; Ishida N
    FEBS Lett; 2005 Jul; 579(17):3555-9. PubMed ID: 15950223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotinylation: a novel posttranslational modification linking cell autonomous circadian clocks with metabolism.
    He L; Hamm JA; Reddy A; Sams D; Peliciari-Garcia RA; McGinnis GR; Bailey SM; Chow CW; Rowe GC; Chatham JC; Young ME
    Am J Physiol Heart Circ Physiol; 2016 Jun; 310(11):H1520-32. PubMed ID: 27084392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diurnal variations in myocardial metabolism.
    Bray MS; Young ME
    Cardiovasc Res; 2008 Jul; 79(2):228-37. PubMed ID: 18304930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Western diet, but not high fat diet, causes derangements of fatty acid metabolism and contractile dysfunction in the heart of Wistar rats.
    Wilson CR; Tran MK; Salazar KL; Young ME; Taegtmeyer H
    Biochem J; 2007 Sep; 406(3):457-67. PubMed ID: 17550347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of 14-3-3η protein on cardiac fatty acid metabolism and macrophage polarization after high fat diet induced type 2 diabetes mellitus.
    Sreedhar R; Arumugam S; Thandavarayan RA; Karuppagounder V; Koga Y; Nakamura T; Harima M; Watanabe K
    Int J Biochem Cell Biol; 2017 Jul; 88():92-99. PubMed ID: 28483670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of dark phase restricted high fat feeding on myocardial adaptation in mice.
    Tsai JY; Villegas-Montoya C; Boland BB; Blasier Z; Egbejimi O; Gonzalez R; Kueht M; McElfresh TA; Brewer RA; Chandler MP; Bray MS; Young ME
    J Mol Cell Cardiol; 2013 Feb; 55():147-55. PubMed ID: 23032157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of inducible nitric oxide synthase in induction of RhoA expression in hearts from diabetic rats.
    Soliman H; Craig GP; Nagareddy P; Yuen VG; Lin G; Kumar U; McNeill JH; Macleod KM
    Cardiovasc Res; 2008 Jul; 79(2):322-30. PubMed ID: 18411229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disrupting the key circadian regulator CLOCK leads to age-dependent cardiovascular disease.
    Alibhai FJ; LaMarre J; Reitz CJ; Tsimakouridze EV; Kroetsch JT; Bolz SS; Shulman A; Steinberg S; Burris TP; Oudit GY; Martino TA
    J Mol Cell Cardiol; 2017 Apr; 105():24-37. PubMed ID: 28223222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian mutant mice with obesity and metabolic syndrome are resilient to cardiovascular disease.
    Reitz CJ; Alibhai FJ; de Lima-Seolin BG; Nemec-Bakk A; Khaper N; Martino TA
    Am J Physiol Heart Circ Physiol; 2020 Nov; 319(5):H1097-H1111. PubMed ID: 32986958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased Glucose Availability Attenuates Myocardial Ketone Body Utilization.
    Brahma MK; Ha CM; Pepin ME; Mia S; Sun Z; Chatham JC; Habegger KM; Abel ED; Paterson AJ; Young ME; Wende AR
    J Am Heart Assoc; 2020 Aug; 9(15):e013039. PubMed ID: 32750298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impairment of aldehyde dehydrogenase-2 by 4-hydroxy-2-nonenal adduct formation and cardiomyocyte hypertrophy in mice fed a high-fat diet and injected with low-dose streptozotocin.
    Mali VR; Ning R; Chen J; Yang XP; Xu J; Palaniyandi SS
    Exp Biol Med (Maywood); 2014 May; 239(5):610-8. PubMed ID: 24651616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Successful metabolic adaptations leading to the prevention of high fat diet-induced murine cardiac remodeling.
    Roberts NW; González-Vega M; Berhanu TK; Mull A; García J; Heydemann A
    Cardiovasc Diabetol; 2015 Sep; 14():127. PubMed ID: 26408147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.