BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26721429)

  • 1. Effect of k-tuple length on sample-comparison with high-throughput sequencing data.
    Wang Y; Lei X; Wang S; Wang Z; Song N; Zeng F; Chen T
    Biochem Biophys Res Commun; 2016 Jan; 469(4):1021-7. PubMed ID: 26721429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive evaluation of the sl1p pipeline for 16S rRNA gene sequencing analysis.
    Whelan FJ; Surette MG
    Microbiome; 2017 Aug; 5(1):100. PubMed ID: 28807046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of metatranscriptomic samples based on k-tuple frequencies.
    Wang Y; Liu L; Chen L; Chen T; Sun F
    PLoS One; 2014; 9(1):e84348. PubMed ID: 24392128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving contig binning of metagenomic data using [Formula: see text] oligonucleotide frequency dissimilarity.
    Wang Y; Wang K; Lu YY; Sun F
    BMC Bioinformatics; 2017 Sep; 18(1):425. PubMed ID: 28931373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Species classifier choice is a key consideration when analysing low-complexity food microbiome data.
    Walsh AM; Crispie F; O'Sullivan O; Finnegan L; Claesson MJ; Cotter PD
    Microbiome; 2018 Mar; 6(1):50. PubMed ID: 29554948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of metagenomic samples using sequence signatures.
    Jiang B; Song K; Ren J; Deng M; Sun F; Zhang X
    BMC Genomics; 2012 Dec; 13():730. PubMed ID: 23268604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ViraPipe: scalable parallel pipeline for viral metagenome analysis from next generation sequencing reads.
    Maarala AI; Bzhalava Z; Dillner J; Heljanko K; Bzhalava D
    Bioinformatics; 2018 Mar; 34(6):928-935. PubMed ID: 29106455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An algorithm for the DNA sequence generation from k-tuple word contents of the minimal number of random fragments.
    Drmanac R; Labat I; Crkvenjakov R
    J Biomol Struct Dyn; 1991 Apr; 8(5):1085-102. PubMed ID: 1878166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating the total genome length of a metagenomic sample using k-mers.
    Hua K; Zhang X
    BMC Genomics; 2019 Apr; 20(Suppl 2):183. PubMed ID: 30967110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metagenome Assembly and Contig Assignment.
    Zhang Q
    Methods Mol Biol; 2018; 1849():179-192. PubMed ID: 30298255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fast and robust protocol for metataxonomic analysis using RNAseq data.
    Cox JW; Ballweg RA; Taft DH; Velayutham P; Haslam DB; Porollo A
    Microbiome; 2017 Jan; 5(1):7. PubMed ID: 28103917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LifePrint: a novel k-tuple distance method for construction of phylogenetic trees.
    Reyes-Prieto F; García-Chéquer AJ; Jaimes-Díaz H; Casique-Almazán J; Espinosa-Lara JM; Palma-Orozco R; Méndez-Tenorio A; Maldonado-Rodríguez R; Beattie KL
    Adv Appl Bioinform Chem; 2011; 4():13-27. PubMed ID: 21918634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of functional elements in unaligned nucleic acid sequences by a novel tuple search algorithm.
    Wolfertstetter F; Frech K; Herrmann G; Werner T
    Comput Appl Biosci; 1996 Feb; 12(1):71-80. PubMed ID: 8670622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FCMM: A comparative metagenomic approach for functional characterization of multiple metagenome samples.
    Lee J; Lee HT; Hong WY; Jang E; Kim J
    J Microbiol Methods; 2015 Aug; 115():121-8. PubMed ID: 26027543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain profiling and epidemiology of bacterial species from metagenomic sequencing.
    Albanese D; Donati C
    Nat Commun; 2017 Dec; 8(1):2260. PubMed ID: 29273717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time analysis of nanopore-based metagenomic sequencing from infected orthopaedic devices.
    Sanderson ND; Street TL; Foster D; Swann J; Atkins BL; Brent AJ; McNally MA; Oakley S; Taylor A; Peto TEA; Crook DW; Eyre DW
    BMC Genomics; 2018 Sep; 19(1):714. PubMed ID: 30261842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ConStrains identifies microbial strains in metagenomic datasets.
    Luo C; Knight R; Siljander H; Knip M; Xavier RJ; Gevers D
    Nat Biotechnol; 2015 Oct; 33(10):1045-52. PubMed ID: 26344404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infer Metagenomic Abundance and Reveal Homologous Genomes Based on the Structure of Taxonomy Tree.
    Qiu YQ; Tian X; Zhang S
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(5):1112-22. PubMed ID: 26451823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Specificity Targeted Functional Profiling in Microbial Communities with ShortBRED.
    Kaminski J; Gibson MK; Franzosa EA; Segata N; Dantas G; Huttenhower C
    PLoS Comput Biol; 2015 Dec; 11(12):e1004557. PubMed ID: 26682918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. metaBIT, an integrative and automated metagenomic pipeline for analysing microbial profiles from high-throughput sequencing shotgun data.
    Louvel G; Der Sarkissian C; Hanghøj K; Orlando L
    Mol Ecol Resour; 2016 Nov; 16(6):1415-1427. PubMed ID: 27238636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.