These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
70 related articles for article (PubMed ID: 26721440)
1. Target disruption of ribosomal protein pNO40 accelerates aging and impairs osteogenic differentiation of mesenchymal stem cells. Lin YM; Wu CC; Chang YC; Wu CH; Ho HL; Hu JW; Chang RC; Wang CT; Ouyang P Biochem Biophys Res Commun; 2016 Jan; 469(4):903-10. PubMed ID: 26721440 [TBL] [Abstract][Full Text] [Related]
2. Age-related CXC chemokine receptor-4-deficiency impairs osteogenic differentiation potency of mouse bone marrow mesenchymal stromal stem cells. Guang LG; Boskey AL; Zhu W Int J Biochem Cell Biol; 2013 Aug; 45(8):1813-20. PubMed ID: 23742988 [TBL] [Abstract][Full Text] [Related]
3. Telomerase-deficient mice exhibit bone loss owing to defects in osteoblasts and increased osteoclastogenesis by inflammatory microenvironment. Saeed H; Abdallah BM; Ditzel N; Catala-Lehnen P; Qiu W; Amling M; Kassem M J Bone Miner Res; 2011 Jul; 26(7):1494-505. PubMed ID: 21308778 [TBL] [Abstract][Full Text] [Related]
4. Ribosomal protein pNO40 mediates nucleolar sequestration of SR family splicing factors and its overexpression impairs mRNA metabolism. Lin YM; Chu PH; Li YZ; Ouyang P Cell Signal; 2017 Apr; 32():12-23. PubMed ID: 28069438 [TBL] [Abstract][Full Text] [Related]
5. Early osteoinductive human bone marrow mesenchymal stromal/stem cells support an enhanced hematopoietic cell expansion with altered chemotaxis- and adhesion-related gene expression profiles. Sugino N; Miura Y; Yao H; Iwasa M; Fujishiro A; Fujii S; Hirai H; Takaori-Kondo A; Ichinohe T; Maekawa T Biochem Biophys Res Commun; 2016 Jan; 469(4):823-9. PubMed ID: 26707642 [TBL] [Abstract][Full Text] [Related]
6. Characterization of human ethmoid sinus mucosa derived mesenchymal stem cells (hESMSCs) and the application of hESMSCs cell sheets in bone regeneration. Xie Q; Wang Z; Huang Y; Bi X; Zhou H; Lin M; Yu Z; Wang Y; Ni N; Sun J; Wu S; You Z; Guo C; Sun H; Wang Y; Gu P; Fan X Biomaterials; 2015 Oct; 66():67-82. PubMed ID: 26196534 [TBL] [Abstract][Full Text] [Related]
7. FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging. Li H; Liu P; Xu S; Li Y; Dekker JD; Li B; Fan Y; Zhang Z; Hong Y; Yang G; Tang T; Ren Y; Tucker HO; Yao Z; Guo X J Clin Invest; 2017 Apr; 127(4):1241-1253. PubMed ID: 28240601 [TBL] [Abstract][Full Text] [Related]
8. CCAAT/enhancer-binding protein β expressed by bone marrow mesenchymal stromal cells regulates early B-cell lymphopoiesis. Yoshioka S; Miura Y; Yao H; Satake S; Hayashi Y; Tamura A; Hishita T; Ichinohe T; Hirai H; Takaor-Kondo A; Maekawa T Stem Cells; 2014 Mar; 32(3):730-40. PubMed ID: 24115241 [TBL] [Abstract][Full Text] [Related]
9. Bortezomib enhances the osteogenic differentiation capacity of human mesenchymal stromal cells derived from bone marrow and placental tissues. Sanvoranart T; Supokawej A; Kheolamai P; U-Pratya Y; Klincumhom N; Manochantr S; Wattanapanitch M; Issaragrisil S Biochem Biophys Res Commun; 2014 May; 447(4):580-5. PubMed ID: 24747566 [TBL] [Abstract][Full Text] [Related]
10. Transplantation of mesenchymal cells rejuvenated by the overexpression of telomerase and myocardin promotes revascularization and tissue repair in a murine model of hindlimb ischemia. Madonna R; Taylor DA; Geng YJ; De Caterina R; Shelat H; Perin EC; Willerson JT Circ Res; 2013 Sep; 113(7):902-14. PubMed ID: 23780385 [TBL] [Abstract][Full Text] [Related]
11. Role of the P2Y13 receptor in the differentiation of bone marrow stromal cells into osteoblasts and adipocytes. Biver G; Wang N; Gartland A; Orriss I; Arnett TR; Boeynaems JM; Robaye B Stem Cells; 2013 Dec; 31(12):2747-58. PubMed ID: 23629754 [TBL] [Abstract][Full Text] [Related]
12. Effects of zinc transporter on differentiation of bone marrow mesenchymal stem cells to osteoblasts. Liu Y; Yan F; Yang WL; Lu XF; Wang WB Biol Trace Elem Res; 2013 Aug; 154(2):234-43. PubMed ID: 23775599 [TBL] [Abstract][Full Text] [Related]
13. Partial loss of Smad7 function impairs bone remodeling, osteogenesis and enhances osteoclastogenesis in mice. Li N; Lee WY; Lin SE; Ni M; Zhang T; Huang XR; Lan HY; Li G Bone; 2014 Oct; 67():46-55. PubMed ID: 24998669 [TBL] [Abstract][Full Text] [Related]
14. miR-124 negatively regulates osteogenic differentiation and in vivo bone formation of mesenchymal stem cells. Qadir AS; Um S; Lee H; Baek K; Seo BM; Lee G; Kim GS; Woo KM; Ryoo HM; Baek JH J Cell Biochem; 2015 May; 116(5):730-42. PubMed ID: 25424317 [TBL] [Abstract][Full Text] [Related]
15. Molecular characterization of a novel nucleolar protein, pNO40. Chang WL; Lee DC; Leu S; Huang YM; Lu MC; Ouyang P Biochem Biophys Res Commun; 2003 Aug; 307(3):569-77. PubMed ID: 12893261 [TBL] [Abstract][Full Text] [Related]
16. Inhibitory effects of hypoxia on metabolic switch and osteogenic differentiation of human mesenchymal stem cells. Hsu SH; Chen CT; Wei YH Stem Cells; 2013 Dec; 31(12):2779-88. PubMed ID: 23733376 [TBL] [Abstract][Full Text] [Related]
17. Human term placenta-derived mesenchymal stromal cells are less prone to osteogenic differentiation than bone marrow-derived mesenchymal stromal cells. Pilz GA; Ulrich C; Ruh M; Abele H; Schäfer R; Kluba T; Bühring HJ; Rolauffs B; Aicher WK Stem Cells Dev; 2011 Apr; 20(4):635-46. PubMed ID: 21047215 [TBL] [Abstract][Full Text] [Related]
18. Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity. Kang R; Zhou Y; Tan S; Zhou G; Aagaard L; Xie L; Bünger C; Bolund L; Luo Y Stem Cell Res Ther; 2015 Aug; 6(1):144. PubMed ID: 26282538 [TBL] [Abstract][Full Text] [Related]