BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 26721493)

  • 1. Targeting Long Noncoding RNA with Antisense Oligonucleotide Technology as Cancer Therapeutics.
    Zhou T; Kim Y; MacLeod AR
    Methods Mol Biol; 2016; 1402():199-213. PubMed ID: 26721493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Knocking Down Long Noncoding RNAs Using Antisense Oligonucleotide Gapmers.
    Maruyama R; Yokota T
    Methods Mol Biol; 2020; 2176():49-56. PubMed ID: 32865781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long noncoding RNAs and tumorigenesis: genetic associations, molecular mechanisms, and therapeutic strategies.
    Zhang F; Zhang L; Zhang C
    Tumour Biol; 2016 Jan; 37(1):163-75. PubMed ID: 26586396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting long non-coding RNAs in cancers: progress and prospects.
    Li CH; Chen Y
    Int J Biochem Cell Biol; 2013 Aug; 45(8):1895-910. PubMed ID: 23748105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-coding RNAs: Therapeutic Strategies and Delivery Systems.
    Ling H
    Adv Exp Med Biol; 2016; 937():229-37. PubMed ID: 27573903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Knockdown of nuclear-retained long noncoding RNAs using modified DNA antisense oligonucleotides.
    Zong X; Huang L; Tripathi V; Peralta R; Freier SM; Guo S; Prasanth KV
    Methods Mol Biol; 2015; 1262():321-31. PubMed ID: 25555591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational Design of Small Molecules Targeting Oncogenic Noncoding RNAs from Sequence.
    Disney MD; Angelbello AJ
    Acc Chem Res; 2016 Dec; 49(12):2698-2704. PubMed ID: 27993012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo Administration of Therapeutic Antisense Oligonucleotides.
    Statello L; Ali MM; Kanduri C
    Methods Mol Biol; 2021; 2254():273-282. PubMed ID: 33326082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using RNA-seq to Assess Off-Target Effects of Antisense Oligonucleotides in Human Cell Lines.
    Michel S; Schirduan K; Shen Y; Klar R; Tost J; Jaschinski F
    Mol Diagn Ther; 2021 Jan; 25(1):77-85. PubMed ID: 33314011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antisense oligonucleotide-based therapies for diseases caused by pre-mRNA processing defects.
    Rigo F; Seth PP; Bennett CF
    Adv Exp Med Biol; 2014; 825():303-52. PubMed ID: 25201110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNAs as targets for antisense-based therapeutics.
    Stenvang J; Kauppinen S
    Expert Opin Biol Ther; 2008 Jan; 8(1):59-81. PubMed ID: 18081537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimated number of off-target candidate sites for antisense oligonucleotides in human mRNA sequences.
    Yoshida T; Naito Y; Sasaki K; Uchida E; Sato Y; Naito M; Kawanishi T; Obika S; Inoue T
    Genes Cells; 2018 Jun; 23(6):448-455. PubMed ID: 29667281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of target mRNA reduction through in situ RNA hybridization in multiple organ systems following systemic antisense treatment in animals.
    Hung G; Xiao X; Peralta R; Bhattacharjee G; Murray S; Norris D; Guo S; Monia BP
    Nucleic Acid Ther; 2013 Dec; 23(6):369-78. PubMed ID: 24161045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid-oligonucleotide conjugates improve cellular uptake and efficiency of TCTP-antisense in castration-resistant prostate cancer.
    Karaki S; Benizri S; Mejías R; Baylot V; Branger N; Nguyen T; Vialet B; Oumzil K; Barthélémy P; Rocchi P
    J Control Release; 2017 Jul; 258():1-9. PubMed ID: 28472637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antisense applications for biological control.
    Pan WH; Clawson GA
    J Cell Biochem; 2006 May; 98(1):14-35. PubMed ID: 16440307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antisense oligonucleotides as therapeutics for malignant diseases.
    Ho PT; Parkinson DR
    Semin Oncol; 1997 Apr; 24(2):187-202. PubMed ID: 9129689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer.
    Hong D; Kurzrock R; Kim Y; Woessner R; Younes A; Nemunaitis J; Fowler N; Zhou T; Schmidt J; Jo M; Lee SJ; Yamashita M; Hughes SG; Fayad L; Piha-Paul S; Nadella MV; Mohseni M; Lawson D; Reimer C; Blakey DC; Xiao X; Hsu J; Revenko A; Monia BP; MacLeod AR
    Sci Transl Med; 2015 Nov; 7(314):314ra185. PubMed ID: 26582900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liver as a target for oligonucleotide therapeutics.
    Sehgal A; Vaishnaw A; Fitzgerald K
    J Hepatol; 2013 Dec; 59(6):1354-9. PubMed ID: 23770039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antisense Oligonucleotide-Mediated Transcript Knockdown in Zebrafish.
    Pauli A; Montague TG; Lennox KA; Behlke MA; Schier AF
    PLoS One; 2015; 10(10):e0139504. PubMed ID: 26436892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel integrated strategy (full length gene targeting) for mRNA accessible site tagging combined with microarray hybridization/RNase H cleavage to screen effective antisense oligonucleotides.
    Sun Y; Duan M; Lin R; Wang D; Li C; Bo X; Wang S
    Mol Vis; 2006 Nov; 12():1364-71. PubMed ID: 17149362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.