These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 26721629)

  • 21. The emerging role of systems biology for engineering protein production in CHO cells.
    Kuo CC; Chiang AW; Shamie I; Samoudi M; Gutierrez JM; Lewis NE
    Curr Opin Biotechnol; 2018 Jun; 51():64-69. PubMed ID: 29223005
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CHO microRNA engineering is growing up: recent successes and future challenges.
    Jadhav V; Hackl M; Druz A; Shridhar S; Chung CY; Heffner KM; Kreil DP; Betenbaugh M; Shiloach J; Barron N; Grillari J; Borth N
    Biotechnol Adv; 2013 Dec; 31(8):1501-13. PubMed ID: 23916872
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Promoter engineering: recent advances in controlling transcription at the most fundamental level.
    Blazeck J; Alper HS
    Biotechnol J; 2013 Jan; 8(1):46-58. PubMed ID: 22890821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of a highly-efficient CHO cell line generation system with engineered SV40E promoter.
    Fan L; Kadura I; Krebs LE; Larson JL; Bowden DM; Frye CC
    J Biotechnol; 2013 Dec; 168(4):652-8. PubMed ID: 23994266
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NF-κB, CRE and YY1 elements are key functional regulators of CMV promoter-driven transient gene expression in CHO cells.
    Brown AJ; Sweeney B; Mainwaring DO; James DC
    Biotechnol J; 2015 Jul; 10(7):1019-28. PubMed ID: 25612069
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid-architectured promoter design to engineer expression in yeast.
    Ergün BG; Çalık P
    Methods Enzymol; 2021; 660():81-104. PubMed ID: 34742399
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CHO-Omics Review: The Impact of Current and Emerging Technologies on Chinese Hamster Ovary Based Bioproduction.
    Stolfa G; Smonskey MT; Boniface R; Hachmann AB; Gulde P; Joshi AD; Pierce AP; Jacobia SJ; Campbell A
    Biotechnol J; 2018 Mar; 13(3):e1700227. PubMed ID: 29072373
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advances in promoter engineering: Novel applications and predefined transcriptional control.
    Cazier AP; Blazeck J
    Biotechnol J; 2021 Oct; 16(10):e2100239. PubMed ID: 34351706
    [TBL] [Abstract][Full Text] [Related]  

  • 29. De novo design and construction of an inducible gene expression system in mammalian cells.
    Karlsson M; Weber W; Fussenegger M
    Methods Enzymol; 2011; 497():239-53. PubMed ID: 21601090
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systematic transfer of prokaryotic sensors and circuits to mammalian cells.
    Stanton BC; Siciliano V; Ghodasara A; Wroblewska L; Clancy K; Trefzer AC; Chesnut JD; Weiss R; Voigt CA
    ACS Synth Biol; 2014 Dec; 3(12):880-91. PubMed ID: 25360681
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Towards combinatorial transcriptional engineering.
    Mehrotra R; Renganaath K; Kanodia H; Loake GJ; Mehrotra S
    Biotechnol Adv; 2017; 35(3):390-405. PubMed ID: 28300614
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling.
    Gutierrez JM; Lewis NE
    Biotechnol J; 2015 Jul; 10(7):939-49. PubMed ID: 26099571
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mammalian designer cells: Engineering principles and biomedical applications.
    Xie M; Fussenegger M
    Biotechnol J; 2015 Jul; 10(7):1005-18. PubMed ID: 26010998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies.
    Kim M; O'Callaghan PM; Droms KA; James DC
    Biotechnol Bioeng; 2011 Oct; 108(10):2434-46. PubMed ID: 21538334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The secretory pathway - the key for unlocking the potential of Chinese hamster ovary cell factories for manufacturing therapeutic proteins.
    Torres M; Hussain H; Dickson AJ
    Crit Rev Biotechnol; 2023 Jun; 43(4):628-645. PubMed ID: 35465810
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering Cellular Metabolism.
    Nielsen J; Keasling JD
    Cell; 2016 Mar; 164(6):1185-1197. PubMed ID: 26967285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An 'omics approach towards CHO cell engineering.
    Datta P; Linhardt RJ; Sharfstein ST
    Biotechnol Bioeng; 2013 May; 110(5):1255-71. PubMed ID: 23322664
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chinese hamster ovary (CHO) host cell engineering to increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase expression.
    Lin N; Mascarenhas J; Sealover NR; George HJ; Brooks J; Kayser KJ; Gau B; Yasa I; Azadi P; Archer-Hartmann S
    Biotechnol Prog; 2015; 31(2):334-46. PubMed ID: 25641927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Semi-synthetic mammalian gene regulatory networks.
    Kramer BP; Fischer M; Fussenegger M
    Metab Eng; 2005 Jul; 7(4):241-50. PubMed ID: 16140238
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering mammalian cell factories with SINEUP noncoding RNAs to improve translation of secreted proteins.
    Patrucco L; Chiesa A; Soluri MF; Fasolo F; Takahashi H; Carninci P; Zucchelli S; Santoro C; Gustincich S; Sblattero D; Cotella D
    Gene; 2015 Sep; 569(2):287-93. PubMed ID: 26045368
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.