These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 26721675)

  • 1. 3',5'-cIMP as Potential Second Messenger in the Vascular Wall.
    Leung SWS; Gao Y; Vanhoutte PM
    Handb Exp Pharmacol; 2017; 238():209-228. PubMed ID: 26721675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cIMP synthesized by sGC as a mediator of hypoxic contraction of coronary arteries.
    Chen Z; Zhang X; Ying L; Dou D; Li Y; Bai Y; Liu J; Liu L; Feng H; Yu X; Leung SW; Vanhoutte PM; Gao Y
    Am J Physiol Heart Circ Physiol; 2014 Aug; 307(3):H328-36. PubMed ID: 24906916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conventional and Unconventional Mechanisms for Soluble Guanylyl Cyclase Signaling.
    Gao Y
    J Cardiovasc Pharmacol; 2016 May; 67(5):367-72. PubMed ID: 26452163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxic Vasospasm Mediated by cIMP: When Soluble Guanylyl Cyclase Turns Bad.
    Gao Y; Chen Z; Leung SW; Vanhoutte PM
    J Cardiovasc Pharmacol; 2015 Jun; 65(6):545-8. PubMed ID: 25264755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. cCMP, cUMP, cTMP, cIMP and cXMP as possible second messengers: development of a hypothesis based on studies with soluble guanylyl cyclase α(1)β(1).
    Beste KY; Seifert R
    Biol Chem; 2013 Feb; 394(2):261-70. PubMed ID: 23087103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypoxic augmentation: The tale of a strange contraction.
    Vanhoutte PM; Leung SWS
    Basic Clin Pharmacol Toxicol; 2020 Aug; 127(2):59-66. PubMed ID: 31310708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelium-Dependent Contractions of Isolated Arteries to Thymoquinone Require Biased Activity of Soluble Guanylyl Cyclase with Subsequent Cyclic IMP Production.
    Detremmerie CM; Chen Z; Li Z; Alkharfy KM; Leung SW; Xu A; Gao Y; Vanhoutte PM
    J Pharmacol Exp Ther; 2016 Sep; 358(3):558-68. PubMed ID: 27335436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PDE1 or PDE5 inhibition augments NO-dependent hypoxic constriction of porcine coronary artery via elevating inosine 3',5'-cyclic monophosphate level.
    Nan Y; Zeng X; Jin Z; Li N; Chen Z; Chen J; Wang D; Wang Y; Lin Z; Ying L
    J Cell Mol Med; 2020 Dec; 24(24):14514-14524. PubMed ID: 33169529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is cIMP a second messenger with functions opposite to those of cGMP?
    Seifert R
    Naunyn Schmiedebergs Arch Pharmacol; 2014 Sep; 387(9):897-9. PubMed ID: 25017018
    [No Abstract]   [Full Text] [Related]  

  • 10. Tissues cIMPly do not lie.
    Gao Y; Vanhoutte PM
    Naunyn Schmiedebergs Arch Pharmacol; 2014 Sep; 387(9):901-3. PubMed ID: 25052042
    [No Abstract]   [Full Text] [Related]  

  • 11. Cyclic Nucleotide Monophosphates in Plants and Plant Signaling.
    Marondedze C; Wong A; Thomas L; Irving H; Gehring C
    Handb Exp Pharmacol; 2017; 238():87-103. PubMed ID: 26721677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Receptor-controlled phosphorylation of alpha 1 soluble guanylyl cyclase enhances nitric oxide-dependent cyclic guanosine 5'-monophosphate production in pituitary cells.
    Kostic TS; Andric SA; Stojilkovic SS
    Mol Endocrinol; 2004 Feb; 18(2):458-70. PubMed ID: 14630997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of NQO-1 mediates the augmented contractions of isolated arteries due to biased activity of soluble guanylyl cyclase in their smooth muscle.
    Detremmerie CMS; Leung SWS; Vanhoutte PM
    Naunyn Schmiedebergs Arch Pharmacol; 2018 Nov; 391(11):1221-1235. PubMed ID: 30062552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotidyl cyclase activity of soluble guanylyl cyclase in intact cells.
    Bähre H; Danker KY; Stasch JP; Kaever V; Seifert R
    Biochem Biophys Res Commun; 2014 Jan; 443(4):1195-9. PubMed ID: 24380860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of 3',5'-cyclic inosine monophosphate in cystathionine γ-lyase-dependent regulation of the vascular tone.
    Mitidieri E; Vellecco V; Brancaleone V; Vanacore D; Manzo OL; Martin E; Sharina I; Krutsenko Y; Monti MC; Morretta E; Papapetropoulos A; Caliendo G; Frecentese F; Cirino G; Sorrentino R; d'Emmanuele di Villa Bianca R; Bucci M
    Br J Pharmacol; 2021 Sep; 178(18):3765-3782. PubMed ID: 33931865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure/function of the soluble guanylyl cyclase catalytic domain.
    Childers KC; Garcin ED
    Nitric Oxide; 2018 Jul; 77():53-64. PubMed ID: 29702251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotidyl cyclase activity of soluble guanylyl cyclase α1β1.
    Beste KY; Burhenne H; Kaever V; Stasch JP; Seifert R
    Biochemistry; 2012 Jan; 51(1):194-204. PubMed ID: 22122229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of soluble guanylyl cyclase activity by oestradiol and progesterone in the hypothalamus but not hippocampus of female rats.
    Reyna-Neyra A; Sarkar G; Etgen AM
    J Neuroendocrinol; 2007 Jun; 19(6):418-25. PubMed ID: 17388815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of nitric oxide and soluble guanylyl cyclase.
    Krumenacker JS; Hanafy KA; Murad F
    Brain Res Bull; 2004 Feb; 62(6):505-15. PubMed ID: 15036565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential expression of functional guanylyl cyclases in melanocytes: absence of nitric-oxide-sensitive isoform in metastatic cells.
    Ivanova K; Das PK; van den Wijngaard RM; Lenz W; Klockenbring T; Malcharzyk V; Drummer C; Gerzer R
    J Invest Dermatol; 2001 Mar; 116(3):409-16. PubMed ID: 11231315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.