BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 26721869)

  • 1. Contribution of Paretic and Nonparetic Limb Peak Propulsive Forces to Changes in Walking Speed in Individuals Poststroke.
    Hsiao H; Awad LN; Palmer JA; Higginson JS; Binder-Macleod SA
    Neurorehabil Neural Repair; 2016 Sep; 30(8):743-52. PubMed ID: 26721869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Presence of a Paretic Propulsion Reserve During Gait in Individuals Following Stroke.
    Lewek MD; Raiti C; Doty A
    Neurorehabil Neural Repair; 2018 Dec; 32(12):1011-1019. PubMed ID: 30558525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Baseline predictors of treatment gains in peak propulsive force in individuals poststroke.
    Hsiao H; Higginson JS; Binder-Macleod SA
    J Neuroeng Rehabil; 2016 Jan; 13():2. PubMed ID: 26767921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Task-specific training for improving propulsion symmetry and gait speed in people in the chronic phase after stroke: a proof-of-concept study.
    Alingh JF; Groen BE; Kamphuis JF; Geurts ACH; Weerdesteyn V
    J Neuroeng Rehabil; 2021 Apr; 18(1):69. PubMed ID: 33892754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships between muscle activity and anteroposterior ground reaction forces in hemiparetic walking.
    Turns LJ; Neptune RR; Kautz SA
    Arch Phys Med Rehabil; 2007 Sep; 88(9):1127-35. PubMed ID: 17826457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms used to increase peak propulsive force following 12-weeks of gait training in individuals poststroke.
    Hsiao H; Knarr BA; Pohlig RT; Higginson JS; Binder-Macleod SA
    J Biomech; 2016 Feb; 49(3):388-95. PubMed ID: 26776931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limb contribution to increased self-selected walking speeds during body weight support in individuals poststroke.
    Hurt CP; Burgess JK; Brown DA
    Gait Posture; 2015 Mar; 41(3):857-9. PubMed ID: 25770079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of real-time gait biofeedback on paretic propulsion and gait biomechanics in individuals post-stroke.
    Genthe K; Schenck C; Eicholtz S; Zajac-Cox L; Wolf S; Kesar TM
    Top Stroke Rehabil; 2018 Apr; 25(3):186-193. PubMed ID: 29457532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow and faster post-stroke walkers have a different trunk progression and braking impulse during gait.
    Duclos NC; Duclos C; Nadeau S
    Gait Posture; 2019 Feb; 68():483-487. PubMed ID: 30616177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms to increase propulsive force for individuals poststroke.
    Hsiao H; Knarr BA; Higginson JS; Binder-Macleod SA
    J Neuroeng Rehabil; 2015 Apr; 12():40. PubMed ID: 25898145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of measurements of propulsion used to reflect changes in walking speed in individuals poststroke.
    Hsiao H; Zabielski TM; Palmer JA; Higginson JS; Binder-Macleod SA
    J Biomech; 2016 Dec; 49(16):4107-4112. PubMed ID: 27756571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linking gait mechanics with perceived quality of life and participation after stroke.
    Rowland DM; Lewek MD
    PLoS One; 2022; 17(9):e0274511. PubMed ID: 36129881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overground walking with a constraint force on the nonparetic leg during swing improves weight shift toward the paretic side in people after stroke.
    Park SH; Yan S; Dee W; Keefer R; Roth EJ; Rymer WZ; Wu M
    J Neurophysiol; 2023 Jul; 130(1):43-55. PubMed ID: 37198133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time course of functional and biomechanical improvements during a gait training intervention in persons with chronic stroke.
    Reisman D; Kesar T; Perumal R; Roos M; Rudolph K; Higginson J; Helm E; Binder-Macleod S
    J Neurol Phys Ther; 2013 Dec; 37(4):159-65. PubMed ID: 24189337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central Drive to the Paretic Ankle Plantarflexors Affects the Relationship Between Propulsion and Walking Speed After Stroke.
    Awad LN; Hsiao H; Binder-Macleod SA
    J Neurol Phys Ther; 2020 Jan; 44(1):42-48. PubMed ID: 31834220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forced Use of the Paretic Leg Induced by a Constraint Force Applied to the Nonparetic Leg in Individuals Poststroke During Walking.
    Hsu CJ; Kim J; Roth EJ; Rymer WZ; Wu M
    Neurorehabil Neural Repair; 2017 Dec; 31(12):1042-1052. PubMed ID: 29145773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propulsive Forces Applied to the Body's Center of Mass Affect Metabolic Energetics Poststroke.
    Penke K; Scott K; Sinskey Y; Lewek MD
    Arch Phys Med Rehabil; 2019 Jun; 100(6):1068-1075. PubMed ID: 30391412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of lateral weight transfer is associated with walking speed in individuals post-stroke.
    Hsiao H; Gray VL; Creath RA; Binder-Macleod SA; Rogers MW
    J Biomech; 2017 Jul; 60():72-78. PubMed ID: 28687151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immediate effects of a single inclined treadmill walking session on level ground walking in individuals after stroke.
    Phadke CP
    Am J Phys Med Rehabil; 2012 Apr; 91(4):337-45. PubMed ID: 22173086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of backward versus forward locomotor training on gait speed and balance control post-stroke: Recovery or compensation?
    Bansal K; Vistamehr A; Conroy CL; Fox EJ; Rose DK
    J Biomech; 2023 Jun; 155():111644. PubMed ID: 37229888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.