These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 26722115)

  • 1. MOGEN: a tool for reconstructing 3D models of genomes from chromosomal conformation capturing data.
    Trieu T; Cheng J
    Bioinformatics; 2016 May; 32(9):1286-92. PubMed ID: 26722115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GenomeFlow: a comprehensive graphical tool for modeling and analyzing 3D genome structure.
    Trieu T; Oluwadare O; Wopata J; Cheng J
    Bioinformatics; 2019 Apr; 35(8):1416-1418. PubMed ID: 30215673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D genome structure modeling by Lorentzian objective function.
    Trieu T; Cheng J
    Nucleic Acids Res; 2017 Feb; 45(3):1049-1058. PubMed ID: 28180292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GSDB: a database of 3D chromosome and genome structures reconstructed from Hi-C data.
    Oluwadare O; Highsmith M; Turner D; Lieberman Aiden E; Cheng J
    BMC Mol Cell Biol; 2020 Aug; 21(1):60. PubMed ID: 32758136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosome3D: reconstructing three-dimensional chromosomal structures from Hi-C interaction frequency data using distance geometry simulated annealing.
    Adhikari B; Trieu T; Cheng J
    BMC Genomics; 2016 Nov; 17(1):886. PubMed ID: 27821047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale reconstruction of 3D structures of human chromosomes from chromosomal contact data.
    Trieu T; Cheng J
    Nucleic Acids Res; 2014 Apr; 42(7):e52. PubMed ID: 24465004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iterative reconstruction of three-dimensional models of human chromosomes from chromosomal contact data.
    Nowotny J; Ahmed S; Xu L; Oluwadare O; Chen H; Hensley N; Trieu T; Cao R; Cheng J
    BMC Bioinformatics; 2015 Oct; 16():338. PubMed ID: 26493399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of copy number variations and translocations in cancer cells from Hi-C data.
    Chakraborty A; Ay F
    Bioinformatics; 2018 Jan; 34(2):338-345. PubMed ID: 29048467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SCL: a lattice-based approach to infer 3D chromosome structures from single-cell Hi-C data.
    Zhu H; Wang Z
    Bioinformatics; 2019 Oct; 35(20):3981-3988. PubMed ID: 30865261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstruction of 3D genome architecture via a two-stage algorithm.
    Segal MR; Bengtsson HL
    BMC Bioinformatics; 2015 Nov; 16():373. PubMed ID: 26553003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstructing high-resolution chromosome three-dimensional structures by Hi-C complex networks.
    Liu T; Wang Z
    BMC Bioinformatics; 2018 Dec; 19(Suppl 17):496. PubMed ID: 30591009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extending partial haplotypes to full genome haplotypes using chromosome conformation capture data.
    Ben-Elazar S; Chor B; Yakhini Z
    Bioinformatics; 2016 Sep; 32(17):i559-i566. PubMed ID: 27587675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hi-C: a method to study the three-dimensional architecture of genomes.
    van Berkum NL; Lieberman-Aiden E; Williams L; Imakaev M; Gnirke A; Mirny LA; Dekker J; Lander ES
    J Vis Exp; 2010 May; (39):. PubMed ID: 20461051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CSynth: an interactive modelling and visualization tool for 3D chromatin structure.
    Todd S; Todd P; McGowan SJ; Hughes JR; Kakui Y; Leymarie FF; Latham W; Taylor S
    Bioinformatics; 2021 May; 37(7):951-955. PubMed ID: 32866221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The corrected gene proximity map for analyzing the 3D genome organization using Hi-C data.
    Ye C; Paccanaro A; Gerstein M; Yan KK
    BMC Bioinformatics; 2020 May; 21(1):222. PubMed ID: 32471347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FastHiC: a fast and accurate algorithm to detect long-range chromosomal interactions from Hi-C data.
    Xu Z; Zhang G; Wu C; Li Y; Hu M
    Bioinformatics; 2016 Sep; 32(17):2692-5. PubMed ID: 27153668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.
    Oluwadare O; Cheng J
    BMC Bioinformatics; 2017 Nov; 18(1):480. PubMed ID: 29137603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Scalable Computational Approach for Simulating Complexes of Multiple Chromosomes.
    Oliveira Junior AB; Contessoto VG; Mello MF; Onuchic JN
    J Mol Biol; 2021 Mar; 433(6):166700. PubMed ID: 33160979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of 3D genome structures for comparison of chromosome conformation capture experiments with microscopy: An evaluation of single-cell Hi-C protocols.
    Lando D; Stevens TJ; Basu S; Laue ED
    Nucleus; 2018 Jan; 9(1):190-201. PubMed ID: 29431585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.