BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26722128)

  • 1. Assessment of Health-Care Worker Exposure to Pandemic Flu in Hospital Rooms.
    Ghia U; Gressel M; Konangi S; Mead K; Kishore A; Earnest G
    ASHRAE Trans; 2012; 118(1):442-449. PubMed ID: 26722128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing Effectiveness of Ceiling-Ventilated Mock Airborne Infection Isolation Room in Preventing Hospital-Acquired Influenza Transmission to Health Care Workers.
    Thatiparti DS; Ghia U; Mead KR
    ASHRAE Trans; 2016; 122(2):35-46. PubMed ID: 28529344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational fluid dynamics study on the influence of an alternate ventilation configuration on the possible flow path of infectious cough aerosols in a mock airborne infection isolation room.
    Thatiparti DS; Ghia U; Mead KR
    Sci Technol Built Environ; 2016; 23(2):355-366. PubMed ID: 28736744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of exhaled particulate matter in airborne infection isolation rooms.
    Richmond-Bryant J
    Build Environ; 2009 Jan; 44(1):44-55. PubMed ID: 32288002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficacy of an ambulance ventilation system in reducing EMS worker exposure to airborne particles from a patient cough aerosol simulator.
    Lindsley WG; Blachere FM; McClelland TL; Neu DT; Mnatsakanova A; Martin SB; Mead KR; Noti JD
    J Occup Environ Hyg; 2019 Dec; 16(12):804-816. PubMed ID: 31638865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directional Airflow and Ventilation in Hospitals: A Case Study of Secondary Airborne Infection.
    Mousavi ES; Grosskopf KR
    Energy Procedia; 2015 Nov; 78():1201-1206. PubMed ID: 32288886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ventilation Rates and Airflow Pathways in Patient Rooms: A Case Study of Bioaerosol Containment and Removal.
    Mousavi ES; Grosskopf KR
    Ann Occup Hyg; 2015 Nov; 59(9):1190-9. PubMed ID: 26187326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of human walking on the flow and airborne transmission in a six-bed isolation room: Tracer gas simulation.
    Hang J; Li Y; Jin R
    Build Environ; 2014 Jul; 77():119-134. PubMed ID: 32288027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation on the contaminant distribution with improved ventilation system in hospital isolation rooms: Effect of supply and exhaust air diffuser configurations.
    Cho J
    Appl Therm Eng; 2019 Feb; 148():208-218. PubMed ID: 32288589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Airflow patterns through single hinged and sliding doors in hospital isolation rooms - Effect of ventilation, flow differential and passage.
    Kalliomäki P; Saarinen P; Tang JW; Koskela H
    Build Environ; 2016 Oct; 107():154-168. PubMed ID: 32287966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effectiveness of in-room air filtration and dilution ventilation for tuberculosis infection control.
    Miller-Leiden S; Lobascio C; Nazaroff WW; Macher JM
    J Air Waste Manag Assoc; 1996 Sep; 46(9):869-82. PubMed ID: 8806221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance Improvement of a Negative-Pressurized Isolation Room for Infection Control.
    Wang F; Chaerasari C; Rakshit D; Permana I; Kusnandar
    Healthcare (Basel); 2021 Aug; 9(8):. PubMed ID: 34442218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation Studies Provide Evidence of Aerosol Transmission of SARS-CoV-2 in a Multi-Story Building via Air Supply, Exhaust and Sanitary Pipelines.
    Zhang Z; Li X; Wang Q; Zhao X; Xu J; Jiang Q; Jiang S; Lyu J; Liu S; Ye L; Yuan J; Feng W; Xie J; Chen Q; Zou H; Xu D
    Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of room geometry and ventilation rate on airflow and aerosol dispersion: implications for worker protection.
    Whicker JJ; Wasiolek PT; Tavani RA
    Health Phys; 2002 Jan; 82(1):52-63. PubMed ID: 11768799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of displacement ventilation systems in airborne infection risk in hospital rooms.
    Villafruela JM; Olmedo I; Berlanga FA; Ruiz de Adana M
    PLoS One; 2019; 14(1):e0211390. PubMed ID: 30699182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a room for tuberculosis patient isolation using theatrical fog.
    Gershey EL; Reiman J; Wood W; Party E
    Infect Control Hosp Epidemiol; 1998 Oct; 19(10):760-6. PubMed ID: 9801284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of air changes per hour (ACH) in possible transmission of airborne infections.
    Memarzadeh F; Xu W
    Build Simul; 2012; 5(1):15-28. PubMed ID: 32218911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical study on the dispersion of airborne contaminants from an isolation room in the case of door opening.
    Tung YC; Shih YC; Hu SC
    Appl Therm Eng; 2009 Jun; 29(8):1544-1551. PubMed ID: 32288590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Actual Ventilation Rates and Efficiency in Research-Scale Pig Houses Based on Ventilation Configurations.
    Lee SY; Choi LY; Park J; Daniel KF; Hong SW; Kwon K; Hwang O
    Animals (Basel); 2023 Jul; 13(15):. PubMed ID: 37570260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The air we breathe: Numerical investigation of ventilation strategies to mitigate airborne dispersion of MERS-CoV in inpatient wards.
    Satheesan MK; Tsang TW; Wong LT; Mui KW
    Heliyon; 2024 Feb; 10(4):e26159. PubMed ID: 38404798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.