These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26722748)

  • 1. Nickel-Substituted Rubredoxin as a Minimal Enzyme Model for Hydrogenase.
    Slater JW; Shafaat HS
    J Phys Chem Lett; 2015 Sep; 6(18):3731-6. PubMed ID: 26722748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Going beyond Structure: Nickel-Substituted Rubredoxin as a Mechanistic Model for the [NiFe] Hydrogenases.
    Slater JW; Marguet SC; Monaco HA; Shafaat HS
    J Am Chem Soc; 2018 Aug; 140(32):10250-10262. PubMed ID: 30016865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct comparison of the performance of a bio-inspired synthetic nickel catalyst and a [NiFe]-hydrogenase, both covalently attached to electrodes.
    Rodriguez-Maciá P; Dutta A; Lubitz W; Shaw WJ; Rüdiger O
    Angew Chem Int Ed Engl; 2015 Oct; 54(42):12303-7. PubMed ID: 26140506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rubredoxin Protein Scaffolds Sourced from Diverse Environmental Niches as an Artificial Hydrogenase Platform.
    Wertz AE; Teptarakulkarn P; Stein RE; Moore PJ; Shafaat HS
    Biochemistry; 2023 Sep; 62(17):2622-2631. PubMed ID: 37579005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [NiFeSe]-hydrogenase chemistry.
    Wombwell C; Caputo CA; Reisner E
    Acc Chem Res; 2015 Nov; 48(11):2858-65. PubMed ID: 26488197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the [NiFe] hydrogenase from the sulfate reducer Desulfovibrio vulgaris Hildenborough.
    Romão CV; Pereira IA; Xavier AV; LeGall J; Teixeira M
    Biochem Biophys Res Commun; 1997 Nov; 240(1):75-9. PubMed ID: 9367885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The direct role of selenocysteine in [NiFeSe] hydrogenase maturation and catalysis.
    Marques MC; Tapia C; Gutiérrez-Sanz O; Ramos AR; Keller KL; Wall JD; De Lacey AL; Matias PM; Pereira IAC
    Nat Chem Biol; 2017 May; 13(5):544-550. PubMed ID: 28319099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase.
    Ogata H; Nishikawa K; Lubitz W
    Nature; 2015 Apr; 520(7548):571-4. PubMed ID: 25624102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [NiFe] hydrogenases: structural and spectroscopic studies of the reaction mechanism.
    Ogata H; Lubitz W; Higuchi Y
    Dalton Trans; 2009 Oct; (37):7577-87. PubMed ID: 19759926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural studies of the carbon monoxide complex of [NiFe]hydrogenase from Desulfovibrio vulgaris Miyazaki F: suggestion for the initial activation site for dihydrogen.
    Ogata H; Mizoguchi Y; Mizuno N; Miki K; Adachi S; Yasuoka N; Yagi T; Yamauchi O; Hirota S; Higuchi Y
    J Am Chem Soc; 2002 Oct; 124(39):11628-35. PubMed ID: 12296727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F by carbon monoxide: an FTIR and EPR spectroscopic study.
    Pandelia ME; Ogata H; Currell LJ; Flores M; Lubitz W
    Biochim Biophys Acta; 2010 Feb; 1797(2):304-13. PubMed ID: 19925776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FT-IR Characterization of the Light-Induced Ni-L2 and Ni-L3 States of [NiFe] Hydrogenase from Desulfovibrio vulgaris Miyazaki F.
    Tai H; Nishikawa K; Inoue S; Higuchi Y; Hirota S
    J Phys Chem B; 2015 Oct; 119(43):13668-74. PubMed ID: 25898020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An orientation-selected ENDOR and HYSCORE study of the Ni-C active state of Desulfovibrio vulgaris Miyazaki F hydrogenase.
    Foerster S; van Gastel M; Brecht M; Lubitz W
    J Biol Inorg Chem; 2005 Jan; 10(1):51-62. PubMed ID: 15611882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interprotein Electron Transfer between FeS-Protein Nanowires and Oxygen-Tolerant NiFe Hydrogenase.
    Rengaraj S; Haddad R; Lojou E; Duraffourg N; Holzinger M; Le Goff A; Forge V
    Angew Chem Int Ed Engl; 2017 Jun; 56(27):7774-7778. PubMed ID: 28489268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough.
    Zacarias S; Vélez M; Pita M; De Lacey AL; Matias PM; Pereira IAC
    Methods Enzymol; 2018; 613():169-201. PubMed ID: 30509465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and DFT Investigations Reveal the Influence of the Outer Coordination Sphere on the Vibrational Spectra of Nickel-Substituted Rubredoxin, a Model Hydrogenase Enzyme.
    Slater JW; Marguet SC; Cirino SL; Maugeri PT; Shafaat HS
    Inorg Chem; 2017 Apr; 56(7):3926-3938. PubMed ID: 28323426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of hydrogen evolution catalyzed by NiFe hydrogenases: insights from a Ni-Ru model compound.
    Vaccaro L; Artero V; Canaguier S; Fontecave M; Field MJ
    Dalton Trans; 2010 Mar; 39(12):3043-9. PubMed ID: 20221538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A metal-metal bond in the light-induced state of [NiFe] hydrogenases with relevance to hydrogen evolution.
    Kampa M; Pandelia ME; Lubitz W; van Gastel M; Neese F
    J Am Chem Soc; 2013 Mar; 135(10):3915-25. PubMed ID: 23402569
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Naughton KJ; Treviño RE; Moore PJ; Wertz AE; Dickson JA; Shafaat HS
    ACS Synth Biol; 2021 Aug; 10(8):2116-2120. PubMed ID: 34370434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation process of [NiFe] hydrogenase elucidated by high-resolution X-ray analyses: conversion of the ready to the unready state.
    Ogata H; Hirota S; Nakahara A; Komori H; Shibata N; Kato T; Kano K; Higuchi Y
    Structure; 2005 Nov; 13(11):1635-42. PubMed ID: 16271886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.