BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26722749)

  • 1. Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in Alkaline Media.
    Burke MS; Zou S; Enman LJ; Kellon JE; Gabor CA; Pledger E; Boettcher SW
    J Phys Chem Lett; 2015 Sep; 6(18):3737-42. PubMed ID: 26722749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution.
    Trotochaud L; Ranney JK; Williams KN; Boettcher SW
    J Am Chem Soc; 2012 Oct; 134(41):17253-61. PubMed ID: 22991896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism.
    Burke MS; Kast MG; Trotochaud L; Smith AM; Boettcher SW
    J Am Chem Soc; 2015 Mar; 137(10):3638-48. PubMed ID: 25700234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation.
    Trotochaud L; Young SL; Ranney JK; Boettcher SW
    J Am Chem Soc; 2014 May; 136(18):6744-53. PubMed ID: 24779732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking Catalyst Redox States and Reaction Dynamics in Ni-Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH.
    Görlin M; Ferreira de Araújo J; Schmies H; Bernsmeier D; Dresp S; Gliech M; Jusys Z; Chernev P; Kraehnert R; Dau H; Strasser P
    J Am Chem Soc; 2017 Feb; 139(5):2070-2082. PubMed ID: 28080038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative Fe sites on transition metal (oxy)hydroxides drive high oxygen evolution activity in base.
    Ou Y; Twight LP; Samanta B; Liu L; Biswas S; Fehrs JL; Sagui NA; Villalobos J; Morales-Santelices J; Antipin D; Risch M; Toroker MC; Boettcher SW
    Nat Commun; 2023 Nov; 14(1):7688. PubMed ID: 38001061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Metal Electrode Support on the Catalytic Activity of Fe(oxy)hydroxide for the Oxygen Evolution Reaction in Alkaline Media.
    Enman LJ; Vise AE; Burke Stevens M; Boettcher SW
    Chemphyschem; 2019 Nov; 20(22):3089-3095. PubMed ID: 31287609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Evolution of Metal (Oxy)hydroxide Nanosheets during the Oxygen Evolution Reaction.
    Dette C; Hurst MR; Deng J; Nellist MR; Boettcher SW
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5590-5594. PubMed ID: 29708339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Surface Reconstruction Unifies the Electrocatalytic Oxygen Evolution Performance of Nonstoichiometric Mixed Metal Oxides.
    Samira S; Hong J; Camayang JCA; Sun K; Hoffman AS; Bare SR; Nikolla E
    JACS Au; 2021 Dec; 1(12):2224-2241. PubMed ID: 34977894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SrCo(0.9)Ti(0.1)O(3-δ) As a New Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Electrolyte with Stable Performance.
    Su C; Wang W; Chen Y; Yang G; Xu X; Tadé MO; Shao Z
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):17663-70. PubMed ID: 26222739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of Oxygen Evolution Activity of Nickel Oxyhydroxide by Electrolyte Alkali Cations.
    Garcia AC; Touzalin T; Nieuwland C; Perini N; Koper MTM
    Angew Chem Int Ed Engl; 2019 Sep; 58(37):12999-13003. PubMed ID: 31250499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrothermal fabrication and catalytic properties of La(1-x)Sr(x)M(1-y)Fe(y)O(3) (M = Mn, Co) that are highly active for the removal of toluene.
    Deng J; Dai H; Jiang H; Zhang L; Wang G; He H; Au CT
    Environ Sci Technol; 2010 Apr; 44(7):2618-23. PubMed ID: 20192252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncovering The Role of Oxygen in Ni-Fe(O
    Drevon D; Görlin M; Chernev P; Xi L; Dau H; Lange KM
    Sci Rep; 2019 Feb; 9(1):1532. PubMed ID: 30728373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles.
    Suntivich J; May KJ; Gasteiger HA; Goodenough JB; Shao-Horn Y
    Science; 2011 Dec; 334(6061):1383-5. PubMed ID: 22033519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidatively Electrodeposited Thin-Film Transition Metal (Oxy)hydroxides as Oxygen Evolution Catalysts.
    Morales-Guio CG; Liardet L; Hu X
    J Am Chem Soc; 2016 Jul; 138(28):8946-57. PubMed ID: 27344954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen.
    Louie MW; Bell AT
    J Am Chem Soc; 2013 Aug; 135(33):12329-37. PubMed ID: 23859025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of composition and morphology effect of Ni(x)Co(1-x)(OH)2 on oxygen evolution/reduction reaction.
    Wang L; Lin C; Huang D; Zhang F; Wang M; Jin J
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10172-80. PubMed ID: 24915609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water.
    Bajdich M; García-Mota M; Vojvodic A; Nørskov JK; Bell AT
    J Am Chem Soc; 2013 Sep; 135(36):13521-30. PubMed ID: 23944254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrocatalytic oxygen evolution over supported small amorphous Ni-Fe nanoparticles in alkaline electrolyte.
    Qiu Y; Xin L; Li W
    Langmuir; 2014 Jul; 30(26):7893-901. PubMed ID: 24914708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trace Fe Incorporation into Ni-(oxy)hydroxide Stabilizes Ni
    Wu Y; Zhao MJ; Li F; Xie J; Li Y; He JB
    Langmuir; 2020 May; 36(19):5126-5133. PubMed ID: 32336103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.