These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Temperature dependent micro-rheology of a glass-forming polymer melt studied by molecular dynamics simulation. Kuhnhold A; Paul W J Chem Phys; 2014 Sep; 141(12):124907. PubMed ID: 25273474 [TBL] [Abstract][Full Text] [Related]
4. Polymer brushes: a controllable system with adjustable glass transition temperature of fragile glass formers. Xie SJ; Qian HJ; Lu ZY J Chem Phys; 2014 Jan; 140(4):044901. PubMed ID: 25669577 [TBL] [Abstract][Full Text] [Related]
5. Structural signature of slow dynamics and dynamic heterogeneity in two-dimensional colloidal liquids: glassy structural order. Kawasaki T; Tanaka H J Phys Condens Matter; 2011 May; 23(19):194121. PubMed ID: 21525551 [TBL] [Abstract][Full Text] [Related]
6. The importance of glassy biopolymer components in food. Tolstoguzov VB Nahrung; 2000 Apr; 44(2):76-84. PubMed ID: 10795572 [TBL] [Abstract][Full Text] [Related]
7. Molecular dynamics simulation of rupture in glassy polymer bridges within filler aggregates. Froltsov VA; Klüppel M; Raos G Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041801. PubMed ID: 23214604 [TBL] [Abstract][Full Text] [Related]
8. Anomalous chain diffusion in polymer nanocomposites for varying polymer-filler interaction strengths. Goswami M; Sumpter BG Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041801. PubMed ID: 20481738 [TBL] [Abstract][Full Text] [Related]
9. Hopping of water in a glassy polymer studied via transition path sampling and likelihood maximization. Xi L; Shah M; Trout BL J Phys Chem B; 2013 Apr; 117(13):3634-47. PubMed ID: 23477660 [TBL] [Abstract][Full Text] [Related]
10. New structural insights into mechanically interlocked polymers revealed by ion mobility mass spectrometry. Scarff CA; Snelling JR; Knust MM; Wilkins CL; Scrivens JH J Am Chem Soc; 2012 Jun; 134(22):9193-8. PubMed ID: 22616687 [TBL] [Abstract][Full Text] [Related]
11. Mechanically Interlocked Polyrotaxane Networks with Collective Motions of Multiple Main-Chain Mechanical Bonds. Yang L; Wang Y; Liu G; Zhao J; Cheng L; Zhang Z; Bai R; Liu Y; Yang M; Yu W; Yan X Angew Chem Int Ed Engl; 2024 Oct; 63(43):e202410834. PubMed ID: 38949776 [TBL] [Abstract][Full Text] [Related]
12. Exploring the Impact of Ring Mobility on the Macroscopic Properties of Doubly Threaded Slide-Ring Gel Networks. Oh J; Liu G; Kim H; Hertzog JE; Nitta N; Rowan SJ Angew Chem Int Ed Engl; 2024 Oct; 63(43):e202411172. PubMed ID: 39158508 [TBL] [Abstract][Full Text] [Related]
14. Correlation of fragility of supercooled liquids with elastic properties of glasses. Novikov VN; Ding Y; Sokolov AP Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):061501. PubMed ID: 16089737 [TBL] [Abstract][Full Text] [Related]
15. Influence of molecular-weight polydispersity on the glass transition of polymers. Li SJ; Xie SJ; Li YC; Qian HJ; Lu ZY Phys Rev E; 2016 Jan; 93(1):012613. PubMed ID: 26871128 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics simulations to calculate glass transition temperature and elastic constants of novel polyethers. Sarangapani R; Reddy ST; Sikder AK J Mol Graph Model; 2015 Apr; 57():114-21. PubMed ID: 25700190 [TBL] [Abstract][Full Text] [Related]
17. Synthesis, structure, and mechanical properties of silica nanocomposite polyrotaxane gels. Kato K; Matsui D; Mayumi K; Ito K Beilstein J Org Chem; 2015; 11():2194-201. PubMed ID: 26664642 [TBL] [Abstract][Full Text] [Related]
18. Are polymers standard glass-forming systems? The role of intramolecular barriers on the glass-transition phenomena of glass-forming polymers. Colmenero J J Phys Condens Matter; 2015 Mar; 27(10):103101. PubMed ID: 25634723 [TBL] [Abstract][Full Text] [Related]
19. Dynamics and thermodynamics of polymer glasses. Cangialosi D J Phys Condens Matter; 2014 Apr; 26(15):153101. PubMed ID: 24675099 [TBL] [Abstract][Full Text] [Related]