These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 26722780)

  • 1. Energetics at the Surface of Photoelectrodes and Its Influence on the Photoelectrochemical Properties.
    Thorne JE; Li S; Du C; Qin G; Wang D
    J Phys Chem Lett; 2015 Oct; 6(20):4083-8. PubMed ID: 26722780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facet-Dependent Kinetics and Energetics of Hematite for Solar Water Oxidation Reactions.
    Li W; Yang KR; Yao X; He Y; Dong Q; Brudvig GW; Batista VS; Wang D
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5616-5622. PubMed ID: 29792412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the Solar Hydrogen Sensitivity of GeSe Thin Film Photoelectrode with Photoelectrochemical Environment.
    Ni H; Fang Y; Hu Y; Xiao G; Wu X; Jiang F
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):46861-46871. PubMed ID: 37769166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ growth of α-Fe
    Li C; Chen Z; Yuan W; Xu QH; Li CM
    Nanoscale; 2019 Jan; 11(3):1111-1122. PubMed ID: 30574647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semiconductor-Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting.
    Nellist MR; Laskowski FA; Lin F; Mills TJ; Boettcher SW
    Acc Chem Res; 2016 Apr; 49(4):733-40. PubMed ID: 27035051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sacrificial Interlayer for Promoting Charge Transport in Hematite Photoanode.
    Zhang K; Dong T; Xie G; Guan L; Guo B; Xiang Q; Dai Y; Tian L; Batool A; Jan SU; Boddula R; Thebo AA; Gong JR
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42723-42733. PubMed ID: 29193959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploratory Study of Zn
    Lin H; Long X; Hu J; Qiu Y; Wang Z; Ma M; An Y; Yang S
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10918-10926. PubMed ID: 29578676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoelectrochemical devices for solar water splitting - materials and challenges.
    Jiang C; Moniz SJA; Wang A; Zhang T; Tang J
    Chem Soc Rev; 2017 Jul; 46(15):4645-4660. PubMed ID: 28644493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
    Sivula K; Le Formal F; Grätzel M
    ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoanodes based on TiO
    Kment S; Riboni F; Pausova S; Wang L; Wang L; Han H; Hubicka Z; Krysa J; Schmuki P; Zboril R
    Chem Soc Rev; 2017 Jun; 46(12):3716-3769. PubMed ID: 28397882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite.
    Mayer MT; Lin Y; Yuan G; Wang D
    Acc Chem Res; 2013 Jul; 46(7):1558-66. PubMed ID: 23425045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting.
    Ke J; He F; Wu H; Lyu S; Liu J; Yang B; Li Z; Zhang Q; Chen J; Lei L; Hou Y; Ostrikov K
    Nanomicro Lett; 2020 Nov; 13(1):24. PubMed ID: 34138209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting PEC performance of Si photoelectrodes by coupling bifunctional CuCo hybrid oxide cocatalysts.
    Wang Y; Tian W; Cao F; Fang D; Chen S; Li L
    Nanotechnology; 2018 Oct; 29(42):425703. PubMed ID: 30070654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-crystal silicon-based electrodes for unbiased solar water splitting: current status and prospects.
    Luo Z; Wang T; Gong J
    Chem Soc Rev; 2019 Apr; 48(7):2158-2181. PubMed ID: 30601502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fe
    Ma J; Wang Q; Li L; Zong X; Sun H; Tao R; Fan X
    J Colloid Interface Sci; 2021 Nov; 602():32-42. PubMed ID: 34118603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong O 2p-Fe 3d Hybridization Observed in Solution-Grown Hematite Films by Soft X-ray Spectroscopies.
    Ye Y; Thorne JE; Wu CH; Liu YS; Du C; Jang JW; Liu E; Wang D; Guo J
    J Phys Chem B; 2018 Jan; 122(2):927-932. PubMed ID: 29090934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in Visible-Light-Driven Photoelectrochemical Water Splitting: Catalyst Nanostructures and Reaction Systems.
    Chen X; Zhang Z; Chi L; Nair AK; Shangguan W; Jiang Z
    Nanomicro Lett; 2016; 8(1):1-12. PubMed ID: 30464988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microstructured p-Si photocathode outcompetes Pt as a counter electrode to hematite in photoelectrochemical water splitting.
    Kawde A; Annamalai A; Sellstedt A; Glatzel P; Wågberg T; Messinger J
    Dalton Trans; 2019 Jan; 48(4):1166-1170. PubMed ID: 30534760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward Tandem Solar Cells for Water Splitting Using Polymer Electrolytes.
    Cots A; Bonete P; Sebastián D; Baglio V; Aricò AS; Gómez R
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25393-25400. PubMed ID: 30024728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.