BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 26722784)

  • 1. Oxygen Intercalation of Graphene on Transition Metal Substrate: An Edge-Limited Mechanism.
    Ma L; Zeng XC; Wang J
    J Phys Chem Lett; 2015 Oct; 6(20):4099-105. PubMed ID: 26722784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-Principles Study of the Role of O2 and H2O in the Decoupling of Graphene on Cu(111).
    Wong K; Kang SJ; Bielawski CW; Ruoff RS; Kwak SK
    J Am Chem Soc; 2016 Aug; 138(34):10986-94. PubMed ID: 27490135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of intercalated oxygen on the properties of graphene on polycrystalline Cu under various environmental conditions.
    Blume R; Kidambi PR; Bayer BC; Weatherup RS; Wang ZJ; Weinberg G; Willinger MG; Greiner M; Hofmann S; Knop-Gericke A; Schlögl R
    Phys Chem Chem Phys; 2014 Dec; 16(47):25989-6003. PubMed ID: 25356600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Edge structural stability and kinetics of graphene chemical vapor deposition growth.
    Shu H; Chen X; Tao X; Ding F
    ACS Nano; 2012 Apr; 6(4):3243-50. PubMed ID: 22417179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of Transition-Metal Nanoparticle Catalytic Graphene Cutting.
    Ma L; Wang J; Yip J; Ding F
    J Phys Chem Lett; 2014 Apr; 5(7):1192-7. PubMed ID: 26274470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen switching of the epitaxial graphene-metal interaction.
    Larciprete R; Ulstrup S; Lacovig P; Dalmiglio M; Bianchi M; Mazzola F; Hornekær L; Orlando F; Baraldi A; Hofmann P; Lizzit S
    ACS Nano; 2012 Nov; 6(11):9551-8. PubMed ID: 23051045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Mechanism of Graphene Vapor-Solid Growth on Insulating Substrates.
    Cheng T; Liu Z; Liu Z; Ding F
    ACS Nano; 2021 Apr; 15(4):7399-7408. PubMed ID: 33749254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemistry under cover: tuning metal-graphene interaction by reactive intercalation.
    Sutter P; Sadowski JT; Sutter EA
    J Am Chem Soc; 2010 Jun; 132(23):8175-9. PubMed ID: 20527937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth mechanism of hexagonal-shape graphene flakes with zigzag edges.
    Luo Z; Kim S; Kawamoto N; Rappe AM; Johnson AT
    ACS Nano; 2011 Nov; 5(11):9154-60. PubMed ID: 21999584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Cooperative Interactions in the Intercalation of Heteroatoms between Graphene and a Metal Substrate.
    Li G; Zhou H; Pan L; Zhang Y; Huang L; Xu W; Du S; Ouyang M; Ferrari AC; Gao HJ
    J Am Chem Soc; 2015 Jun; 137(22):7099-103. PubMed ID: 25961327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slide fastener reduction of graphene-oxide edges by calcium: insight from ab initio molecular dynamics.
    Xie SY; Li XB; Tian WQ; Wang D; Chen NK; Han D; Sun HB
    Chemphyschem; 2014 Sep; 15(13):2707-11. PubMed ID: 24925117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerium Oxide Nanoclusters on Graphene/Ru(0001): Intercalation of Oxygen via Spillover.
    Novotny Z; Netzer FP; Dohnálek Z
    ACS Nano; 2015 Aug; 9(8):8617-26. PubMed ID: 26230753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemistry below graphene: decoupling epitaxial graphene from metals by potential-controlled electrochemical oxidation.
    Palacio I; Otero-Irurueta G; Alonso C; Martínez JI; López-Elvira E; Muñoz-Ochando I; Salavagione HJ; López MF; García-Hernández M; Méndez J; Ellis GJ; Martín-Gago JA
    Carbon N Y; 2018 Apr; 129():837-846. PubMed ID: 30190626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate-induced solvent intercalation for stable graphene doping.
    Kim HH; Yang JW; Jo SB; Kang B; Lee SK; Bong H; Lee G; Kim KS; Cho K
    ACS Nano; 2013 Feb; 7(2):1155-62. PubMed ID: 23368414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature dependence of the reconstruction of zigzag edges in graphene.
    He K; Robertson AW; Fan Y; Allen CS; Lin YC; Suenaga K; Kirkland AI; Warner JH
    ACS Nano; 2015 May; 9(5):4786-95. PubMed ID: 25880335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strains induced by point defects in graphene on a metal.
    Blanc N; Jean F; Krasheninnikov AV; Renaud G; Coraux J
    Phys Rev Lett; 2013 Aug; 111(8):085501. PubMed ID: 24010451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growing graphene sheets from reactions with methyl radicals: a quantum chemical study.
    Carissan Y; Klopper W
    Chemphyschem; 2006 Aug; 7(8):1770-8. PubMed ID: 16865761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth from behind: Intercalation-growth of two-dimensional FeO moiré structure underneath of metal-supported graphene.
    Dahal A; Batzill M
    Sci Rep; 2015 Jun; 5():11378. PubMed ID: 26074475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transition metal surface passivated edges of hexagonal boron nitride (h-BN) and the mechanism of h-BN's chemical vapor deposition (CVD) growth.
    Zhao R; Li F; Liu Z; Liu Z; Ding F
    Phys Chem Chem Phys; 2015 Nov; 17(43):29327-34. PubMed ID: 26469316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capabilities of transition metals in retarding the bonding of carbon atoms to minimize dendritic graphene.
    Zhu Z; Zhan L; Wan W; Zhao Z; Shih TM; Cai W
    Nanoscale; 2017 Oct; 9(39):14804-14808. PubMed ID: 28956047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.