These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 26722784)

  • 21. Unveiling the atomistic mechanisms for oxygen intercalation in a strongly interacting graphene-metal interface.
    Romero-Muñiz C; Martín-Recio A; Pou P; Gómez-Rodríguez JM; Pérez R
    Phys Chem Chem Phys; 2018 May; 20(19):13370-13378. PubMed ID: 29721570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Giant edge state splitting at atomically precise graphene zigzag edges.
    Wang S; Talirz L; Pignedoli CA; Feng X; Müllen K; Fasel R; Ruffieux P
    Nat Commun; 2016 May; 7():11507. PubMed ID: 27181701
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Edge-Catalyst Wetting and Orientation Control of Graphene Growth by Chemical Vapor Deposition Growth.
    Yuan Q; Yakobson BI; Ding F
    J Phys Chem Lett; 2014 Sep; 5(18):3093-9. PubMed ID: 26276318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of hydrogen passivation on the decoupling of graphene on SiC(0001) substrate: First-principles calculations.
    Liu K; Yan P; Li J; He C; Ouyang T; Zhang C; Tang C; Zhong J
    Sci Rep; 2017 Aug; 7(1):8461. PubMed ID: 28814766
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Altering the Properties of Graphene on Cu(111) by Intercalation of Potassium Bromide.
    Schulzendorf M; Hinaut A; Kisiel M; Jöhr R; Pawlak R; Restuccia P; Meyer E; Righi MC; Glatzel T
    ACS Nano; 2019 May; 13(5):5485-5492. PubMed ID: 30983325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SAM-like arrangement of thiolated graphene nanoribbons: decoupling the edge state from the metal substrate.
    Cabrera-Sanfelix P; Arnau A; Sánchez-Portal D
    Phys Chem Chem Phys; 2013 Mar; 15(9):3233-42. PubMed ID: 23344647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gold intercalation of boron-doped graphene on Ni(111): XPS and DFT study.
    Zhao W; Gebhardt J; Gotterbarm K; Höfert O; Gleichweit C; Papp C; Görling A; Steinrück HP
    J Phys Condens Matter; 2013 Nov; 25(44):445002. PubMed ID: 24056002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlling Water Intercalation Is Key to a Direct Graphene Transfer.
    Verguts K; Schouteden K; Wu CH; Peters L; Vrancken N; Wu X; Li Z; Erkens M; Porret C; Huyghebaert C; Van Haesendonck C; De Gendt S; Brems S
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37484-37492. PubMed ID: 28972738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxygen intercalation in PVD graphene grown on copper substrates: A decoupling approach.
    Azpeitia J; Palacio I; Martínez JI; Muñoz-Ochando I; Lauwaet K; Mompean FJ; Ellis GJ; García-Hernández M; Martín-Gago JA; Munuera C; López MF
    Appl Surf Sci; 2020 Nov; 529():147100. PubMed ID: 33154607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxygen intercalation under graphene on Ir(111): energetics, kinetics, and the role of graphene edges.
    Grånäs E; Knudsen J; Schröder UA; Gerber T; Busse C; Arman MA; Schulte K; Andersen JN; Michely T
    ACS Nano; 2012 Nov; 6(11):9951-63. PubMed ID: 23039853
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transition metal surface passivation induced graphene edge reconstruction.
    Gao J; Zhao J; Ding F
    J Am Chem Soc; 2012 Apr; 134(14):6204-9. PubMed ID: 22420470
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functionalization of graphene grown on metal substrate with atomic oxygen: enolate vs epoxide.
    Jung J; Lim H; Oh J; Kim Y
    J Am Chem Soc; 2014 Jun; 136(24):8528-31. PubMed ID: 24885459
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decoupling of CVD-grown epitaxial graphene using NaCl intercalation.
    Kim Y; Han H; Luo D; Ruoff RS; Shin HJ
    Nanoscale; 2022 Nov; 14(45):16929-16935. PubMed ID: 36345667
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quenching of local magnetic moment in oxygen adsorbed graphene nanoribbons.
    Veiga RG; Miwa RH; Srivastava GP
    J Chem Phys; 2008 May; 128(20):201101. PubMed ID: 18513000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphene delamination using 'electrochemical methods': an ion intercalation effect.
    Verguts K; Coroa J; Huyghebaert C; De Gendt S; Brems S
    Nanoscale; 2018 Mar; 10(12):5515-5521. PubMed ID: 29512680
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Graphene nucleation on transition metal surface: structure transformation and role of the metal step edge.
    Gao J; Yip J; Zhao J; Yakobson BI; Ding F
    J Am Chem Soc; 2011 Apr; 133(13):5009-15. PubMed ID: 21384854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recovery of the Dirac states of graphene by intercalating two-dimensional traditional semiconductors.
    Gao Y; Zhang YY; Du S
    J Phys Condens Matter; 2019 May; 31(19):194001. PubMed ID: 30736029
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition.
    Ma T; Ren W; Zhang X; Liu Z; Gao Y; Yin LC; Ma XL; Ding F; Cheng HM
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20386-91. PubMed ID: 24297886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Capacitive Sensing of Intercalated H2O Molecules Using Graphene.
    Olson EJ; Ma R; Sun T; Ebrish MA; Haratipour N; Min K; Aluru NR; Koester SJ
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25804-12. PubMed ID: 26502269
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The edges of graphene.
    Zhang X; Xin J; Ding F
    Nanoscale; 2013 Apr; 5(7):2556-69. PubMed ID: 23420074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.