BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

608 related articles for article (PubMed ID: 26722797)

  • 1. Integrated microfluidic system with simultaneous emulsion generation and concentration.
    Koppula KS; Fan R; Veerapalli KR; Wan J
    J Colloid Interface Sci; 2016 Mar; 466():162-7. PubMed ID: 26722797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double emulsions with controlled morphology by microgel scaffolding.
    Thiele J; Seiffert S
    Lab Chip; 2011 Sep; 11(18):3188-92. PubMed ID: 21796282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation and stability of nanoparticle-stabilised oil-in-water emulsions in a microfluidic chip.
    Priest C; Reid MD; Whitby CP
    J Colloid Interface Sci; 2011 Nov; 363(1):301-6. PubMed ID: 21840529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of equilibrium Pickering emulsions--a matter of time scales.
    Kraft DJ; Luigjes B; de Folter JW; Philipse AP; Kegel WK
    J Phys Chem B; 2010 Sep; 114(38):12257-63. PubMed ID: 20809591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions.
    Hughes E; Maan AA; Acquistapace S; Burbidge A; Johns ML; Gunes DZ; Clausen P; Syrbe A; Hugo J; Schroen K; Miralles V; Atkins T; Gray R; Homewood P; Zick K
    J Colloid Interface Sci; 2013 Jan; 389(1):147-56. PubMed ID: 22964093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-module microfluidic platform for continuous pre-concentration of water-soluble ions and separation of oil droplets from oil-in-water (O/W) emulsions using a DC-biased AC electrokinetic technique.
    Das D; Phan DT; Zhao Y; Kang Y; Chan V; Yang C
    Electrophoresis; 2017 Mar; 38(5):645-652. PubMed ID: 27935087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled generation of submicron emulsion droplets via highly stable tip-streaming mode in microfluidic devices.
    Jeong WC; Lim JM; Choi JH; Kim JH; Lee YJ; Kim SH; Lee G; Kim JD; Yi GR; Yang SM
    Lab Chip; 2012 Apr; 12(8):1446-53. PubMed ID: 22402819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocurable pickering emulsion for colloidal particles with structural complexity.
    Kim SH; Yi GR; Kim KH; Yang SM
    Langmuir; 2008 Mar; 24(6):2365-71. PubMed ID: 18237213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW; Lin YH; Lee GB
    Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleation rate measurement of colloidal crystallization using microfluidic emulsion droplets.
    Gong T; Shen J; Hu Z; Marquez M; Cheng Z
    Langmuir; 2007 Mar; 23(6):2919-23. PubMed ID: 17305378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of Pickering Emulsions with Oppositely Charged Latex Particles: Influence of Various Parameters and Particle Arrangement around Droplets.
    Nallamilli T; Binks BP; Mani E; Basavaraj MG
    Langmuir; 2015 Oct; 31(41):11200-8. PubMed ID: 26411316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels.
    Maenaka H; Yamada M; Yasuda M; Seki M
    Langmuir; 2008 Apr; 24(8):4405-10. PubMed ID: 18327961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic emulsion separation-simultaneous separation and sensing by multilayer nanofilm structures.
    Uhlmann P; Varnik F; Truman P; Zikos G; Moulin JF; Müller-Buschbaum P; Stamm M
    J Phys Condens Matter; 2011 May; 23(18):184123. PubMed ID: 21508469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device.
    Sugiura S; Kuroiwa T; Kagota T; Nakajima M; Sato S; Mukataka S; Walde P; Ichikawa S
    Langmuir; 2008 May; 24(9):4581-8. PubMed ID: 18376890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Giant biocompatible and biodegradable PEG-PMCL vesicles and microcapsules by solvent evaporation from double emulsion droplets.
    Foster T; Dorfman KD; Davis HT
    J Colloid Interface Sci; 2010 Nov; 351(1):140-50. PubMed ID: 20627256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces.
    Nisisako T; Ando T; Hatsuzawa T
    Lab Chip; 2012 Sep; 12(18):3426-35. PubMed ID: 22806835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device.
    Xu JH; Li SW; Tan J; Wang YJ; Luo GS
    Langmuir; 2006 Sep; 22(19):7943-6. PubMed ID: 16952223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.