BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26722814)

  • 1. Hydro- and solvothermolysis of kraft lignin for maximizing production of monomeric aromatic chemicals.
    Lee HS; Jae J; Ha JM; Suh DJ
    Bioresour Technol; 2016 Mar; 203():142-9. PubMed ID: 26722814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of kraft lignin under hydrothermal conditions.
    Zhou XF
    Bioresour Technol; 2014 Oct; 170():583-586. PubMed ID: 25176169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen.
    Zakzeski J; Jongerius AL; Bruijnincx PC; Weckhuysen BM
    ChemSusChem; 2012 Aug; 5(8):1602-9. PubMed ID: 22740175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of temperature on the catalytic conversion of Kraft lignin using near-critical water.
    Nguyen TDH; Maschietti M; Åmand LE; Vamling L; Olausson L; Andersson SI; Theliander H
    Bioresour Technol; 2014 Oct; 170():196-203. PubMed ID: 25137090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of various reaction parameters on solvolytical depolymerization of lignin in sub- and supercritical ethanol.
    Kim JY; Oh S; Hwang H; Cho TS; Choi IG; Choi JW
    Chemosphere; 2013 Nov; 93(9):1755-64. PubMed ID: 23820536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent and catalyst effect in the formic acid aided lignin-to-liquids.
    Oregui-Bengoechea M; Gandarias I; Arias PL; Barth T
    Bioresour Technol; 2018 Dec; 270():529-536. PubMed ID: 30248652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol.
    Yuan Z; Cheng S; Leitch M; Xu CC
    Bioresour Technol; 2010 Dec; 101(23):9308-13. PubMed ID: 20667719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective depolymerization of concentrated acid hydrolysis lignin using a carbon-supported ruthenium catalyst in ethanol/formic acid media.
    Kristianto I; Limarta SO; Lee H; Ha JM; Suh DJ; Jae J
    Bioresour Technol; 2017 Jun; 234():424-431. PubMed ID: 28347962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen.
    Zakzeski J; Weckhuysen BM
    ChemSusChem; 2011 Mar; 4(3):369-78. PubMed ID: 21246746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals.
    Gosselink RJ; Teunissen W; van Dam JE; de Jong E; Gellerstedt G; Scott EL; Sanders JP
    Bioresour Technol; 2012 Feb; 106():173-7. PubMed ID: 22197338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic hydrothermal liquefaction of lignin for production of aromatic hydrocarbon over metal supported mesoporous catalyst.
    Feng L; Li X; Wang Z; Liu B
    Bioresour Technol; 2021 Mar; 323():124569. PubMed ID: 33360949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrothermal conversion of lignin to substituted phenols and aromatic ethers.
    Singh R; Prakash A; Dhiman SK; Balagurumurthy B; Arora AK; Puri SK; Bhaskar T
    Bioresour Technol; 2014 Aug; 165():319-22. PubMed ID: 24636917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of rice straw to monomeric phenols under supercritical methanol and ethanol.
    Singh R; Srivastava V; Chaudhary K; Gupta P; Prakash A; Balagurumurthy B; Bhaskar T
    Bioresour Technol; 2015; 188():280-6. PubMed ID: 25603730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of lignin using aqueous polyoxometalates in the presence of alcohols.
    Voitl T; Rudolf von Rohr P
    ChemSusChem; 2008; 1(8-9):763-9. PubMed ID: 18688829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Process Parameters on Hydrolytic Treatment of Black Liquor for the Production of Low-Molecular-Weight Depolymerized Kraft Lignin.
    Ahmad Z; Mahmood N; Yuan Z; Paleologou M; Xu CC
    Molecules; 2018 Sep; 23(10):. PubMed ID: 30261610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic ethanolysis of Kraft lignin into high-value small-molecular chemicals over a nanostructured α-molybdenum carbide catalyst.
    Ma R; Hao W; Ma X; Tian Y; Li Y
    Angew Chem Int Ed Engl; 2014 Jul; 53(28):7310-5. PubMed ID: 24891069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extraction of phenols from lignin microwave-pyrolysis oil using a switchable hydrophilicity solvent.
    Fu D; Farag S; Chaouki J; Jessop PG
    Bioresour Technol; 2014 Feb; 154():101-8. PubMed ID: 24384316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethanol/1,4-dioxane/formic acid as synergistic solvents for the conversion of lignin into high-value added phenolic monomers.
    Wu Z; Zhao X; Zhang J; Li X; Zhang Y; Wang F
    Bioresour Technol; 2019 Apr; 278():187-194. PubMed ID: 30703636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reductive de-polymerization of kraft lignin for chemicals and fuels using formic acid as an in-situ hydrogen source.
    Huang S; Mahmood N; Tymchyshyn M; Yuan Z; Xu CC
    Bioresour Technol; 2014 Nov; 171():95-102. PubMed ID: 25189514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pyrolytic degradation of wood-derived lignin from pulping process.
    Shen DK; Gu S; Luo KH; Wang SR; Fang MX
    Bioresour Technol; 2010 Aug; 101(15):6136-46. PubMed ID: 20307972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.