These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 26722891)

  • 1. Inverse Opal Photonic Crystals as a Strategy to Improve Photocatalysis: Underexplored Questions.
    Curti M; Schneider J; Bahnemann DW; Mendive CB
    J Phys Chem Lett; 2015 Oct; 6(19):3903-10. PubMed ID: 26722891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning and transferring slow photons from TiO
    Madanu TL; Mouchet SR; Deparis O; Liu J; Li Y; Su BL
    J Colloid Interface Sci; 2023 Mar; 634():290-299. PubMed ID: 36535165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulating multi-spectral slow photons in bilayer inverse opal TiO
    Lourdu Madanu T; Chaabane L; Mouchet SR; Deparis O; Su BL
    J Colloid Interface Sci; 2023 Oct; 647():233-245. PubMed ID: 37253292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene Quantum Dot-TiO
    Apostolaki MA; Toumazatou A; Antoniadou M; Sakellis E; Xenogiannopoulou E; Gardelis S; Boukos N; Falaras P; Dimoulas A; Likodimos V
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33371303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photon Management Enabled by Opal and Inverse Opal Photonic Crystals: from Photocatalysis to Photoluminescence Regulation.
    Wang H; Cheng Y; Zhu J; Zhang L
    Chempluschem; 2024 Jul; 89(7):e202400002. PubMed ID: 38527947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light harvesting in photonic crystals revisited: why do slow photons at the blue edge enhance absorption?
    Deparis O; Mouchet SR; Su BL
    Phys Chem Chem Phys; 2015 Nov; 17(45):30525-32. PubMed ID: 26517229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion.
    Collins G; Armstrong E; McNulty D; O'Hanlon S; Geaney H; O'Dwyer C
    Sci Technol Adv Mater; 2016; 17(1):563-582. PubMed ID: 27877904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of disorder on the optically amplified photocatalytic efficiency of titania inverse opals.
    Chen JI; Freymann Gv; Kitaev V; Ozin GA
    J Am Chem Soc; 2007 Feb; 129(5):1196-202. PubMed ID: 17263401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visible Light Trapping against Charge Recombination in FeO
    Pylarinou M; Toumazatou A; Sakellis E; Xenogiannopoulou E; Gardelis S; Boukos N; Dimoulas A; Likodimos V
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structuring β-Ga2O3 photonic crystal photocatalyst for efficient degradation of organic pollutants.
    Li X; Zhen X; Meng S; Xian J; Shao Y; Fu X; Li D
    Environ Sci Technol; 2013 Sep; 47(17):9911-7. PubMed ID: 23906280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen-fluorine co-doped titania inverse opals for enhanced solar light driven photocatalysis.
    Rahul TK; Sandhyarani N
    Nanoscale; 2015 Nov; 7(43):18259-70. PubMed ID: 26487369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design.
    Chen X; Ye J; Ouyang S; Kako T; Li Z; Zou Z
    ACS Nano; 2011 Jun; 5(6):4310-8. PubMed ID: 21604767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced Photocatalysts Based on Reduced Nanographene Oxide-TiO
    Diamantopoulou A; Sakellis E; Gardelis S; Tsoutsou D; Glenis S; Boukos N; Dimoulas A; Likodimos V
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31394874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing the conversion efficiency of dye-sensitized TiO2 photoelectrochemical cells by coupling to photonic crystals.
    Halaoui LI; Abrams NM; Mallouk TE
    J Phys Chem B; 2005 Apr; 109(13):6334-42. PubMed ID: 16851706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled Insertion of Planar Defect in Inverse Opals for Anticounterfeiting Applications.
    Heo Y; Lee SY; Kim JW; Jeon TY; Kim SH
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43098-43104. PubMed ID: 29165980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonic crystal coupled TiO(2)/polymer hybrid for efficient photocatalysis under visible light irradiation.
    Liao G; Chen S; Quan X; Chen H; Zhang Y
    Environ Sci Technol; 2010 May; 44(9):3481-5. PubMed ID: 20387884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterostructured CoO
    Loukopoulos S; Toumazatou A; Sakellis E; Xenogiannopoulou E; Boukos N; Dimoulas A; Likodimos V
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32993143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of photonic bandgap on upconversion emission in YbPO4:Er inverse opal photonic crystals.
    Yang Z; Zhu K; Song Z; Zhou D; Yin Z; Qiu J
    Appl Opt; 2011 Jan; 50(3):287-90. PubMed ID: 21263723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Opaline ZnO Photonic Crystal Film and Its Slow-Photon Effect on Photoreduction of Carbon Dioxide.
    Wu X; Lan D; Zhang R; Pang F; Ge J
    Langmuir; 2019 Jan; 35(1):194-202. PubMed ID: 30520643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering the Slow Photon Effect in Photoactive Nanoporous Anodic Alumina Gradient-Index Filters for Photocatalysis.
    Lim SY; Law CS; Markovic M; Kirby JK; Abell AD; Santos A
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):24124-24136. PubMed ID: 29939009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.