These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 26722893)

  • 1. Origin of Unusual Excitonic Absorption and Emission from Colloidal Ag2S Nanocrystals: Ultrafast Photophysics and Solar Cell.
    Mir WJ; Swarnkar A; Sharma R; Katti A; Adarsh KV; Nag A
    J Phys Chem Lett; 2015 Oct; 6(19):3915-22. PubMed ID: 26722893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of Ag
    Ji C; Zhang Y; Zhang X; Wang P; Shen H; Gao W; Wang Y; Yu WW
    Nanotechnology; 2017 Feb; 28(6):065602. PubMed ID: 28067215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure induced photoluminescence modulation in a wide range and synthesis of monodispersed ternary AgCuS nanocrystal based on Ag
    Wang Y; Li X; Xu M; Wang K; Zhu H; Zhao W; Yan J; Zhang Z
    Nanoscale; 2018 Feb; 10(5):2577-2587. PubMed ID: 29350235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoisomerisation quantum yield and non-linear cross-sections with femtosecond excitation of the photoactive yellow protein.
    Lincoln CN; Fitzpatrick AE; van Thor JJ
    Phys Chem Chem Phys; 2012 Dec; 14(45):15752-64. PubMed ID: 23090503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced charge-carrier transfer by CdS and Ag2S quantum dots co-sensitization for TiO2 nanotube arrays.
    Liu Z; Ji G; Guan D; Wang B; Wu X
    J Colloid Interface Sci; 2015 Nov; 457():1-8. PubMed ID: 26142959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile synthesis and enhanced visible-light photocatalytic activity of Ag₂S nanocrystal-sensitized Ag₈W₄O₁₆ nanorods.
    Wang X; Zhan S; Wang Y; Wang P; Yu H; Yu J; Hu C
    J Colloid Interface Sci; 2014 May; 422():30-7. PubMed ID: 24655825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic synthesis of different-sized AgInS
    Thi Thu Huong T; Loan NT; Ung TDT; Tung NT; Han H; Liem NQ
    Nanotechnology; 2022 Jun; 33(35):. PubMed ID: 35620843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison studies of excitonic properties and multiphoton absorption of near-infrared-I-emitting Cu-doped InP and InP/ZnSe nanocrystals.
    He T; Liu H; Li J; Xiao S; Hu W; Qiu X; Lin X; Gao Y
    Opt Lett; 2020 Mar; 45(6):1350-1353. PubMed ID: 32163963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced reverse saturable absorption in graphene/Ag2S organic glasses.
    Ouyang Q; Di X; Lei Z; Qi L; Li C; Chen Y
    Phys Chem Chem Phys; 2013 Jul; 15(26):11048-53. PubMed ID: 23715155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloidal InSb nanocrystals.
    Liu W; Chang AY; Schaller RD; Talapin DV
    J Am Chem Soc; 2012 Dec; 134(50):20258-61. PubMed ID: 23198950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photodeposition of Ag2S on TiO2 nanorod arrays for quantum dot-sensitized solar cells.
    Hu H; Ding J; Zhang S; Li Y; Bai L; Yuan N
    Nanoscale Res Lett; 2013 Jan; 8(1):10. PubMed ID: 23286551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the Power-Conversion Efficiency through Alloying in Common Anion CdZnX (X=S, Se) Nanocrystal Sensitized Solar Cells.
    Maiti S; Anand P; Azlan F; Dana J; Ghosh HN
    Chemphyschem; 2019 Oct; 20(20):2662-2667. PubMed ID: 31120604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmentally benign and efficient Ag2S-ZnO nanowires as photoanodes for solar cells: comparison with CdS-ZnO nanowires.
    Hwang I; Yong K
    Chemphyschem; 2013 Feb; 14(2):364-8. PubMed ID: 23233308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-regulated route to ternary hybrid nanocrystals of Ag-Ag2S-CdS with near-infrared photoluminescence and enhanced photothermal conversion.
    Zhu G; Bao C; Liu Y; Shen X; Xi C; Xu Z; Ji Z
    Nanoscale; 2014 Oct; 6(19):11147-56. PubMed ID: 25212685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating Exciton Dynamics in Composite Nanocrystals for Excitonic Solar Cells.
    Concina I; Manzoni C; Grancini G; Celikin M; Soudi A; Rosei F; Zavelani-Rossi M; Cerullo G; Vomiero A
    J Phys Chem Lett; 2015 Jul; 6(13):2489-95. PubMed ID: 26266724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-Dependent Excitonic Photoluminescence and Nonlinear Absorption of CdTe Nanocrystal/Polyvinyl Alcohol Films.
    Chang Q; Sui J; Chai Z; Wu W
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous-phase linker-assisted attachment of cysteinate(2-)-capped cdse quantum dots to TiO2 for quantum dot-sensitized solar cells.
    Coughlin KM; Nevins JS; Watson DF
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8649-54. PubMed ID: 23937323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photodoping and Transient Spectroscopies of Copper-Doped CdSe/CdS Nanocrystals.
    Hughes KE; Hartstein KH; Gamelin DR
    ACS Nano; 2018 Jan; 12(1):718-728. PubMed ID: 29286633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-photon-assisted excited state absorption in nanocomposite films of PbS stabilized in a synthetic glue matrix.
    Kurian PA; Vijayan C; Suchand Sandeep CS; Philip R; Sathiyamoorthy K
    Nanotechnology; 2007 Feb; 18(7):075708. PubMed ID: 21730516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of interband two-photon absorption saturation in CdS nanocrystals.
    He J; Mi J; Li H; Ji W
    J Phys Chem B; 2005 Oct; 109(41):19184-7. PubMed ID: 16853474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.