These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Theoretical study of electronic transport through P-porphyrin and S-porphyrin nanoribbons. Mondal R; Bhattacharya B; Singh NB; Sarkar U J Mol Graph Model; 2020 Jun; 97():107543. PubMed ID: 32006741 [TBL] [Abstract][Full Text] [Related]
3. Negative differential resistance devices by using N-doped graphene nanoribbons. Huang J; Wang W; Li Q; Yang J J Chem Phys; 2014 Apr; 140(16):164703. PubMed ID: 24784295 [TBL] [Abstract][Full Text] [Related]
4. Dual conductance, negative differential resistance, and rectifying behavior in a molecular device modulated by side groups. Wan H; Xu Y; Zhou G J Chem Phys; 2012 May; 136(18):184704. PubMed ID: 22583306 [TBL] [Abstract][Full Text] [Related]
5. Charge transport in nanoscale junctions. Albrecht T; Kornyshev A; Bjørnholm T J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407 [TBL] [Abstract][Full Text] [Related]
6. Tip-contact related low-bias negative differential resistance and rectifying effects in benzene-porphyrin-benzene molecular junctions. Cheng JF; Zhou L; Liu M; Yan Q; Han Q; Gao L J Chem Phys; 2014 Nov; 141(17):174304. PubMed ID: 25381511 [TBL] [Abstract][Full Text] [Related]
7. Negative differential resistance in oxidized zigzag graphene nanoribbons. Wang M; Li CM Phys Chem Chem Phys; 2011 Jan; 13(4):1413-8. PubMed ID: 21152514 [TBL] [Abstract][Full Text] [Related]
8. Three-terminal graphene negative differential resistance devices. Wu Y; Farmer DB; Zhu W; Han SJ; Dimitrakopoulos CD; Bol AA; Avouris P; Lin YM ACS Nano; 2012 Mar; 6(3):2610-6. PubMed ID: 22324780 [TBL] [Abstract][Full Text] [Related]
11. Molecular spintronics: destructive quantum interference controlled by a gate. Saraiva-Souza A; Smeu M; Zhang L; Souza Filho AG; Guo H; Ratner MA J Am Chem Soc; 2014 Oct; 136(42):15065-71. PubMed ID: 25264567 [TBL] [Abstract][Full Text] [Related]
12. Breaking Down Resonance: Nonlinear Transport and the Breakdown of Coherent Tunneling Models in Single Molecule Junctions. Fung ED; Gelbwaser D; Taylor J; Low J; Xia J; Davydenko I; Campos LM; Marder S; Peskin U; Venkataraman L Nano Lett; 2019 Apr; 19(4):2555-2561. PubMed ID: 30821465 [TBL] [Abstract][Full Text] [Related]
13. The enhanced spin-polarized transport behaviors through cobalt benzene-porphyrin-benzene molecular junctions: the effect of functional groups. Cheng JF; Zhou L; Wen Z; Yan Q; Han Q; Gao L J Phys Condens Matter; 2017 May; 29(17):175201. PubMed ID: 28140354 [TBL] [Abstract][Full Text] [Related]
14. Contact effects and quantum interference in engineered dangling bond loops on silicon surfaces. Kleshchonok A; Gutierrez R; Cuniberti G Nanoscale; 2015 Sep; 7(33):13967-73. PubMed ID: 26228007 [TBL] [Abstract][Full Text] [Related]
15. A gate-induced switch in zigzag graphene nanoribbons and charging effects. Cheraghchi H; Esmailzade H Nanotechnology; 2010 May; 21(20):205306. PubMed ID: 20418607 [TBL] [Abstract][Full Text] [Related]
16. Electron transport properties of atomic carbon nanowires between graphene electrodes. Shen L; Zeng M; Yang SW; Zhang C; Wang X; Feng Y J Am Chem Soc; 2010 Aug; 132(33):11481-6. PubMed ID: 20677763 [TBL] [Abstract][Full Text] [Related]
18. Negative differential resistance in GeSi core-shell transport junctions: the role of local sp(2) hybridization. Liu N; Zhang L; Chen X; Kong X; Zheng X; Guo H Nanoscale; 2016 Sep; 8(35):16026-33. PubMed ID: 27546305 [TBL] [Abstract][Full Text] [Related]
19. Half-filled energy bands induced negative differential resistance in nitrogen-doped graphene. Li XF; Lian KY; Qiu Q; Luo Y Nanoscale; 2015 Mar; 7(9):4156-62. PubMed ID: 25665635 [TBL] [Abstract][Full Text] [Related]
20. Transport properties of graphene nanoribbon-based molecular devices. Ding Z; Jiang J; Xing H; Shu H; Dong R; Chen X; Lu W J Comput Chem; 2011 Mar; 32(4):737-41. PubMed ID: 20925088 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]