These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 26722903)

  • 21. C-BN single-walled nanotubes from hybrid connection of BN/C nanoribbons: prediction by ab initio density functional calculations.
    Du A; Chen Y; Zhu Z; Lu G; Smith SC
    J Am Chem Soc; 2009 Feb; 131(5):1682-3. PubMed ID: 19152268
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of substitutionally boron-doped single-walled semiconducting zigzag carbon nanotubes on ammonia adsorption.
    Vikramaditya T; Sumithra K
    J Comput Chem; 2014 Mar; 35(7):586-94. PubMed ID: 24395720
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy gaps, electronic structures, and x-ray spectroscopies of finite semiconductor single-walled carbon nanotubes.
    Gao B; Jiang J; Wu Z; Luo Y
    J Chem Phys; 2008 Feb; 128(8):084707. PubMed ID: 18315072
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly conductive boron nanotubes: transport properties, work functions, and structural stabilities.
    Bezugly V; Kunstmann J; Grundkötter-Stock B; Frauenheim T; Niehaus T; Cuniberti G
    ACS Nano; 2011 Jun; 5(6):4997-5005. PubMed ID: 21528877
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions.
    Li XF; Wang LL; Chen KQ; Luo Y
    J Phys Condens Matter; 2012 Mar; 24(9):095801. PubMed ID: 22317831
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Action-derived molecular dynamics simulations for the migration and coalescence of vacancies in graphene and carbon nanotubes.
    Lee AT; Ryu B; Lee IH; Chang KJ
    J Phys Condens Matter; 2014 Mar; 26(11):115303. PubMed ID: 24590224
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of B/N co-doping on the stability and electronic structure of single-walled carbon nanotubes by first-principles theory.
    Li YT; Chen TC
    Nanotechnology; 2009 Sep; 20(37):375705. PubMed ID: 19706947
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra.
    Kanemitsu Y
    Phys Chem Chem Phys; 2011 Sep; 13(33):14879-88. PubMed ID: 21735026
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GaN Haeckelite Single-Layered Nanostructures: Monolayer and Nanotubes.
    Camacho-Mojica DC; López-Urías F
    Sci Rep; 2015 Dec; 5():17902. PubMed ID: 26658148
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Graphene/Single-Walled Carbon Nanotube Composites Generated by Covalent Cross-Linking.
    Pramoda K; Kumar R; Rao CN
    Chem Asian J; 2015 Oct; 10(10):2147-52. PubMed ID: 26211399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure and electronic properties of MoS2 nanotubes.
    Seifert G; Terrones H; Terrones M; Jungnickel G; Frauenheim T
    Phys Rev Lett; 2000 Jul; 85(1):146-9. PubMed ID: 10991180
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electronic-type- and diameter-dependent reduction of single-walled carbon nanotubes induced by adsorption of electron-donor molecules.
    Zhou J; Maeda Y; Lu J; Tashiro A; Hasegawa T; Luo G; Wang L; Lai L; Akasaka T; Nagase S; Gao Z; Qin R; Mei WN; Li G; Yu D
    Small; 2009 Feb; 5(2):244-55. PubMed ID: 19058283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electronic structure and transport of a carbon chain between graphene nanoribbon leads.
    Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM
    J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chiral γ-graphyne nanotubes with almost equivalent bandgaps.
    Wu S; Yuan Y; Cho D; Lee JY; Kang B
    J Chem Phys; 2019 Feb; 150(5):054706. PubMed ID: 30736670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures.
    Vadahanambi S; Lee SH; Kim WJ; Oh IK
    Environ Sci Technol; 2013 Sep; 47(18):10510-7. PubMed ID: 23947834
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Doping induced structural stability and electronic properties of GaN nanotubes.
    Srivastava A; Khan MI; Tyagi N; Swaroop Khare P
    ScientificWorldJournal; 2014; 2014():984591. PubMed ID: 24707225
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Doping single-walled carbon nanotubes through molecular charge-transfer: a theoretical study.
    Manna AK; Pati SK
    Nanoscale; 2010 Jul; 2(7):1190-5. PubMed ID: 20648348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical study of binding of metal-doped graphene sheet and carbon nanotubes with dioxin.
    Kang HS
    J Am Chem Soc; 2005 Jul; 127(27):9839-43. PubMed ID: 15998088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Achieving Boron-Carbon-Nitrogen Heterostructures by Collision Fusion of Carbon Nanotubes and Boron Nitride Nanotubes.
    Zhang C; Xu J; Song H; Ren K; Yu ZG; Zhang YW
    Molecules; 2023 May; 28(11):. PubMed ID: 37298810
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mixed low-dimensional nanomaterial: 2D ultranarrow MoS2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes.
    Wang Z; Li H; Liu Z; Shi Z; Lu J; Suenaga K; Joung SK; Okazaki T; Gu Z; Zhou J; Gao Z; Li G; Sanvito S; Wang E; Iijima S
    J Am Chem Soc; 2010 Oct; 132(39):13840-7. PubMed ID: 20828123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.