These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26723101)

  • 1. 3D displacement of the middle ear ossicles in the quasi-static pressure regime using new X-ray stereoscopy technique.
    Salih WHM; Soons JAM; Dirckx JJJ
    Hear Res; 2016 Oct; 340():60-68. PubMed ID: 26723101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H; Salcher R; Schwab B; Lenarz T
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional quasi-static displacement of human middle-ear ossicles under static pressure loads: Measurement using a stereo camera system.
    Pipping B; Dobrev I; Schär M; Chatzimichalis M; Röösli C; Huber AM; Sim JH
    Hear Res; 2023 Jan; 427():108651. PubMed ID: 36462376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-static transfer function of the rabbit middle ear' measured with a heterodyne interferometer with high-resolution position decoder.
    Dirckx JJ; Buytaert JA; Decraemer WF
    J Assoc Res Otolaryngol; 2006 Dec; 7(4):339-51. PubMed ID: 16897337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method to measure sound transmission via the malleus-incus complex.
    Dobrev I; Ihrle S; Röösli C; Gerig R; Eiber A; Huber AM; Sim JH
    Hear Res; 2016 Oct; 340():89-98. PubMed ID: 26626362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reverse transmission along the ossicular chain in gerbil.
    Dong W; Decraemer WF; Olson ES
    J Assoc Res Otolaryngol; 2012 Aug; 13(4):447-59. PubMed ID: 22466074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element analysis of the coupling between ossicular chain and mass loading for evaluation of implantable hearing device.
    Wang X; Hu Y; Wang Z; Shi H
    Hear Res; 2011 Oct; 280(1-2):48-57. PubMed ID: 21554941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ossicular motion related to middle ear transmission delay in gerbil.
    de La Rochefoucauld O; Kachroo P; Olson ES
    Hear Res; 2010 Dec; 270(1-2):158-72. PubMed ID: 20696229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure.
    Péus D; Dobrev I; Prochazka L; Thoele K; Dalbert A; Boss A; Newcomb N; Probst R; Röösli C; Sim JH; Huber A; Pfiffner F
    Hear Res; 2017 Aug; 351():88-97. PubMed ID: 28601531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurements of ossicular vibrations in the middle ear.
    Schön F; Müller J
    Audiol Neurootol; 1999; 4(3-4):142-9. PubMed ID: 10187922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal ossicular site for maximal vibration transmissions to coupled transducers.
    Chung J; Song WJ; Sim JH; Kim W; Oh SH
    Hear Res; 2013 Jul; 301():137-45. PubMed ID: 23337694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental ossicular fixations and the middle ear's response to sound: evidence for a flexible ossicular chain.
    Nakajima HH; Ravicz ME; Merchant SN; Peake WT; Rosowski JJ
    Hear Res; 2005 Jun; 204(1-2):60-77. PubMed ID: 15925192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase relations between the microphonic crista effect of the three semi-circular canals, the cochlear microphonics and the motion of the stapes.
    DE VRIES H; VROLIJK JM
    Acta Otolaryngol; 1953 Feb; 43(1):80-9. PubMed ID: 13040005
    [No Abstract]   [Full Text] [Related]  

  • 14. Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles.
    Chang EW; Cheng JT; Röösli C; Kobler JB; Rosowski JJ; Yun SH
    Hear Res; 2013 Oct; 304():49-56. PubMed ID: 23811181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The natural vibration characteristics of human ossicles.
    Chou CF; Yu JF; Chen CK
    Chang Gung Med J; 2011; 34(2):160-5. PubMed ID: 21539757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of prosthesis design on vibration of the reconstructed ossicular chain: a comparative finite element analysis of four prostheses.
    Kelly DJ; Prendergast PJ; Blayney AW
    Otol Neurotol; 2003 Jan; 24(1):11-9. PubMed ID: 12544021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human ossicular-joint flexibility transforms the peak amplitude and width of impulsive acoustic stimuli.
    Gottlieb PK; Vaisbuch Y; Puria S
    J Acoust Soc Am; 2018 Jun; 143(6):3418. PubMed ID: 29960477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Rotary motion of the base of the stapes].
    WANDERER E
    Z Laryngol Rhinol Otol; 1953 Mar; 32(3):158-68. PubMed ID: 13079046
    [No Abstract]   [Full Text] [Related]  

  • 19. [Amplitude relationships: tympanic membrane, stapes foot plate and basilar membrane].
    KIETZ H
    Arch Ohren Nasen Kehlkopfheilkd; 1959; 175():361-6. PubMed ID: 14409016
    [No Abstract]   [Full Text] [Related]  

  • 20. Restoring hearing using total ossicular replacement prostheses--analysis of 3D finite element model.
    Yao W; Li B; Huang X; Guo C; Luo X; Zhou W; Duan M
    Acta Otolaryngol; 2012 Feb; 132(2):152-9. PubMed ID: 22201262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.