These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Chimera states are chaotic transients. Wolfrum M; Omel'chenko OE Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):015201. PubMed ID: 21867244 [TBL] [Abstract][Full Text] [Related]
6. Heteroclinic switching between chimeras in a ring of six oscillator populations. Lee S; Krischer K Chaos; 2023 Jun; 33(6):. PubMed ID: 37276574 [TBL] [Abstract][Full Text] [Related]
7. Synchronization and decoherence in a self-excited inertia-wheel multiple rigid-body dynamical system. Yakir G; Gottlieb O Chaos; 2023 Dec; 33(12):. PubMed ID: 38048248 [TBL] [Abstract][Full Text] [Related]
8. Connecting minimal chimeras and fully asymmetric chaotic attractors through equivariant pitchfork bifurcations. Haugland SW; Krischer K Phys Rev E; 2021 Jun; 103(6):L060201. PubMed ID: 34271668 [TBL] [Abstract][Full Text] [Related]
9. Chimeras and clusters in networks of hyperbolic chaotic oscillators. Cano AV; Cosenza MG Phys Rev E; 2017 Mar; 95(3-1):030202. PubMed ID: 28415379 [TBL] [Abstract][Full Text] [Related]
10. Symmetry breaking yields chimeras in two small populations of Kuramoto-type oscillators. Burylko O; Martens EA; Bick C Chaos; 2022 Sep; 32(9):093109. PubMed ID: 36182374 [TBL] [Abstract][Full Text] [Related]
11. When three is a crowd: Chaos from clusters of Kuramoto oscillators with inertia. Brister BN; Belykh VN; Belykh IV Phys Rev E; 2020 Jun; 101(6-1):062206. PubMed ID: 32688588 [TBL] [Abstract][Full Text] [Related]
12. Chimeras and solitary states in 3D oscillator networks with inertia. Maistrenko V; Sudakov O; Osiv O Chaos; 2020 Jun; 30(6):063113. PubMed ID: 32611131 [TBL] [Abstract][Full Text] [Related]
13. Isotropy of Angular Frequencies and Weak Chimeras with Broken Symmetry. Bick C J Nonlinear Sci; 2017; 27(2):605-626. PubMed ID: 28408787 [TBL] [Abstract][Full Text] [Related]
14. Hysteretic transitions in the Kuramoto model with inertia. Olmi S; Navas A; Boccaletti S; Torcini A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042905. PubMed ID: 25375565 [TBL] [Abstract][Full Text] [Related]
15. Inhomogeneous stationary and oscillatory regimes in coupled chaotic oscillators. Liu W; Volkov E; Xiao J; Zou W; Zhan M; Yang J Chaos; 2012 Sep; 22(3):033144. PubMed ID: 23020483 [TBL] [Abstract][Full Text] [Related]
16. Chimera states in two populations with heterogeneous phase-lag. Martens EA; Bick C; Panaggio MJ Chaos; 2016 Sep; 26(9):094819. PubMed ID: 27781471 [TBL] [Abstract][Full Text] [Related]
17. Collective dynamics of coupled Lorenz oscillators near the Hopf boundary: Intermittency and chimera states. Khatun AA; Muthanna YA; Punetha N; Jafri HH Phys Rev E; 2024 Mar; 109(3-1):034208. PubMed ID: 38632727 [TBL] [Abstract][Full Text] [Related]
18. Bistable chimera attractors on a triangular network of oscillator populations. Martens EA Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016216. PubMed ID: 20866716 [TBL] [Abstract][Full Text] [Related]
19. Different types of chimera states: an interplay between spatial and dynamical chaos. Dudkowski D; Maistrenko Y; Kapitaniak T Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032920. PubMed ID: 25314517 [TBL] [Abstract][Full Text] [Related]
20. Synchronization in populations of globally coupled oscillators with inertial effects. Acebron JA; Bonilla LL; Spigler R Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt A):3437-54. PubMed ID: 11088845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]