These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 26723327)

  • 1. Iterated intracochlear reflection shapes the envelopes of basilar-membrane click responses.
    Shera CA
    J Acoust Soc Am; 2015 Dec; 138(6):3717-22. PubMed ID: 26723327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Medial olivocochlear efferent inhibition of basilar-membrane responses to clicks: evidence for two modes of cochlear mechanical excitation.
    Guinan JJ; Cooper NP
    J Acoust Soc Am; 2008 Aug; 124(2):1080-92. PubMed ID: 18681598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basilar-membrane interference patterns from multiple internal reflection of cochlear traveling waves.
    Shera CA; Cooper NP
    J Acoust Soc Am; 2013 Apr; 133(4):2224-39. PubMed ID: 23556591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Testing coherent reflection in chinchilla: Auditory-nerve responses predict stimulus-frequency emissions.
    Shera CA; Tubis A; Talmadge CL
    J Acoust Soc Am; 2008 Jul; 124(1):381-95. PubMed ID: 18646984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Timing of cochlear responses inferred from frequency-threshold tuning curves of auditory-nerve fibers.
    Temchin AN; Recio-Spinoso A; Ruggero MA
    Hear Res; 2011 Feb; 272(1-2):178-86. PubMed ID: 20951191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-frequency analysis of auditory-nerve-fiber and basilar-membrane click responses reveal glide irregularities and non-characteristic-frequency skirts.
    Lin T; Guinan JJ
    J Acoust Soc Am; 2004 Jul; 116(1):405-16. PubMed ID: 15296001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning.
    Raufer S; Verhulst S
    Hear Res; 2016 Dec; 342():150-160. PubMed ID: 27989947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering.
    Siegel JH; Cerka AJ; Recio-Spinoso A; Temchin AN; van Dijk P; Ruggero MA
    J Acoust Soc Am; 2005 Oct; 118(4):2434-43. PubMed ID: 16266165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of an impulse response measured at the basilar membrane of the chinchilla.
    Wit HP; Bell A
    J Acoust Soc Am; 2015 Jul; 138(1):94-6. PubMed ID: 26233010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Searching for the optimal stimulus eliciting auditory brainstem responses in humans.
    Fobel O; Dau T
    J Acoust Soc Am; 2004 Oct; 116(4 Pt 1):2213-22. PubMed ID: 15532653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency glides in click responses of the basilar membrane and auditory nerve: their scaling behavior and origin in traveling-wave dispersion.
    Shera CA
    J Acoust Soc Am; 2001 May; 109(5 Pt 1):2023-34. PubMed ID: 11386555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient evoked otoacoustic emission input/output function and cochlear reflectivity: experiment and model.
    Sisto R; Moleti A
    J Acoust Soc Am; 2008 Nov; 124(5):2995-3008. PubMed ID: 19045787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intensimetric detection of distortion product otoacoustic emissions with ear canal calibration.
    Sisto R; Cerini L; Sanjust F; Moleti A
    J Acoust Soc Am; 2017 Jul; 142(1):EL13. PubMed ID: 28764449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wiener kernels of chinchilla auditory-nerve fibers: verification using responses to tones, clicks, and noise and comparison with basilar-membrane vibrations.
    Temchin AN; Recio-Spinoso A; van Dijk P; Ruggero MA
    J Neurophysiol; 2005 Jun; 93(6):3635-48. PubMed ID: 15659530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basilar membrane responses to broadband stimuli.
    Recio A; Rhode WS
    J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2281-98. PubMed ID: 11108369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Allen-Fahey experiment extended.
    de Boer E; Nuttall AL; Hu N; Zou Y; Zheng J
    J Acoust Soc Am; 2005 Mar; 117(3 Pt 1):1260-6. PubMed ID: 15807015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast Waves at the Base of the Cochlea.
    Recio-Spinoso A; Rhode WS
    PLoS One; 2015; 10(6):e0129556. PubMed ID: 26062000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric-acoustic interactions in the hearing cochlea: single fiber recordings.
    Tillein J; Hartmann R; Kral A
    Hear Res; 2015 Apr; 322():112-26. PubMed ID: 25285621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reflection-Source Emissions Evoked with Clicks and Frequency Sweeps: Comparisons Across Levels.
    Charaziak KK; Shera CA
    J Assoc Res Otolaryngol; 2021 Dec; 22(6):641-658. PubMed ID: 34606020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distortion product otoacoustic emissions and basilar membrane vibration in the 6-9 kHz region of sensitive chinchilla cochleae.
    Rhode WS
    J Acoust Soc Am; 2007 Nov; 122(5):2725-37. PubMed ID: 18189565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.