These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 26723327)

  • 21. Mechanical bases of frequency tuning and neural excitation at the base of the cochlea: comparison of basilar-membrane vibrations and auditory-nerve-fiber responses in chinchilla.
    Ruggero MA; Narayan SS; Temchin AN; Recio A
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11744-50. PubMed ID: 11050204
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The origin of periodicity in the spectrum of evoked otoacoustic emissions.
    Zweig G; Shera CA
    J Acoust Soc Am; 1995 Oct; 98(4):2018-47. PubMed ID: 7593924
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Middle-ear velocity transfer function, cochlear input immittance, and middle-ear efficiency in chinchilla.
    Ravicz ME; Rosowski JJ
    J Acoust Soc Am; 2013 Oct; 134(4):2852-65. PubMed ID: 24116422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coherent reflection without traveling waves: on the origin of long-latency otoacoustic emissions in lizards.
    Bergevin C; Shera CA
    J Acoust Soc Am; 2010 Apr; 127(4):2398-409. PubMed ID: 20370023
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of click intensity on click-evoked otoacoustic emission waveforms: implications for the origin of emissions.
    Carvalho S; Büki B; Bonfils P; Avan P
    Hear Res; 2003 Jan; 175(1-2):215-25. PubMed ID: 12527140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Click- and chirp-evoked human compound action potentials.
    Chertoff M; Lichtenhan J; Willis M
    J Acoust Soc Am; 2010 May; 127(5):2992-6. PubMed ID: 21117748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Level dependence of the nonlinear-distortion component of distortion-product otoacoustic emissions in humans.
    Zelle D; Thiericke JP; Dalhoff E; Gummer AW
    J Acoust Soc Am; 2015 Dec; 138(6):3475-90. PubMed ID: 26723305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling signal propagation in the human cochlea.
    Neely ST; Rasetshwane DM
    J Acoust Soc Am; 2017 Oct; 142(4):2155. PubMed ID: 29092611
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cochlear traveling-wave amplification, suppression, and beamforming probed using noninvasive calibration of intracochlear distortion sources.
    Shera CA; Guinan JJ
    J Acoust Soc Am; 2007 Feb; 121(2):1003-16. PubMed ID: 17348523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Input/output functions of different-latency components of transient-evoked and stimulus-frequency otoacoustic emissions.
    Sisto R; Sanjust F; Moleti A
    J Acoust Soc Am; 2013 Apr; 133(4):2240-53. PubMed ID: 23556592
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Model-based estimation of the frequency tuning of the inner-hair-cell stereocilia from neural tuning curves.
    Altoè A; Pulkki V; Verhulst S
    J Acoust Soc Am; 2017 Jun; 141(6):4438. PubMed ID: 28679269
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distortion product otoacoustic emission generation mechanisms and their dependence on stimulus level and primary frequency ratio.
    Botti T; Sisto R; Sanjust F; Moleti A; D'Amato L
    J Acoust Soc Am; 2016 Feb; 139(2):658-73. PubMed ID: 26936550
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Asymmetry and Microstructure of Temporal-Suppression Patterns in Basilar-Membrane Responses to Clicks: Relation to Tonal Suppression and Traveling-Wave Dispersion.
    Charaziak KK; Dong W; Altoè A; Shera CA
    J Assoc Res Otolaryngol; 2020 Apr; 21(2):151-170. PubMed ID: 32166602
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-frequency transient evoked otoacoustic emissions acquisition with auditory canal compensated clicks using swept-tone analysis.
    Bennett CL; Ozdamar O
    J Acoust Soc Am; 2010 Apr; 127(4):2410-9. PubMed ID: 20370024
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reverse cochlear propagation in the intact cochlea of the gerbil: evidence for slow traveling waves.
    Meenderink SW; van der Heijden M
    J Neurophysiol; 2010 Mar; 103(3):1448-55. PubMed ID: 20089817
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intensity-invariance of fine time structure in basilar-membrane click responses: implications for cochlear mechanics.
    Shera CA
    J Acoust Soc Am; 2001 Jul; 110(1):332-48. PubMed ID: 11508959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison between otoacoustic and auditory brainstem response latencies supports slow backward propagation of otoacoustic emissions.
    Moleti A; Sisto R
    J Acoust Soc Am; 2008 Mar; 123(3):1495-503. PubMed ID: 18345838
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Representation of the vowel /epsilon/ in normal and impaired auditory nerve fibers: model predictions of responses in cats.
    Zilany MS; Bruce IC
    J Acoust Soc Am; 2007 Jul; 122(1):402-17. PubMed ID: 17614499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.