BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26723353)

  • 1. Interpreting attenuation at different excitation amplitudes to estimate strain-dependent interfacial rheological properties of lipid-coated monodisperse microbubbles.
    Xia L; Porter TM; Sarkar K
    J Acoust Soc Am; 2015 Dec; 138(6):3994-4003. PubMed ID: 26723353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles.
    Doinikov AA; Haac JF; Dayton PA
    Ultrasonics; 2009 Feb; 49(2):269-75. PubMed ID: 18990417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the interfacial rheological properties of a poly(DL-lactic acid)-encapsulated contrast agent using in vitro attenuation and scattering.
    Paul S; Russakow D; Rodgers T; Sarkar K; Cochran M; Wheatley MA
    Ultrasound Med Biol; 2013 Jul; 39(7):1277-91. PubMed ID: 23643050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity.
    Li Q; Matula TJ; Tu J; Guo X; Zhang D
    Phys Med Biol; 2013 Feb; 58(4):985-98. PubMed ID: 23339902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacial Rheological Properties of Contrast Microbubble Targestar P as a Function of Ambient Pressure.
    Kumar KN; Sarkar K
    Ultrasound Med Biol; 2016 Apr; 42(4):1010-7. PubMed ID: 26777069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation.
    Sarkar K; Shi WT; Chatterjee D; Forsberg F
    J Acoust Soc Am; 2005 Jul; 118(1):539-50. PubMed ID: 16119373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on the inertial cavitation threshold and shell properties of commercialized ultrasound contrast agent microbubbles.
    Guo X; Li Q; Zhang Z; Zhang D; Tu J
    J Acoust Soc Am; 2013 Aug; 134(2):1622-31. PubMed ID: 23927202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitation threshold for subharmonic generation from contrast microbubbles.
    Katiyar A; Sarkar K
    J Acoust Soc Am; 2011 Nov; 130(5):3137-47. PubMed ID: 22087942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model for acoustic vaporization of encapsulated droplets.
    Guédra M; Coulouvrat F
    J Acoust Soc Am; 2015 Dec; 138(6):3656-67. PubMed ID: 26723321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic manipulation of the subharmonic scattering of phospholipid-coated microbubbles.
    Faez T; Renaud G; Defontaine M; Calle S; de Jong N
    Phys Med Biol; 2011 Oct; 56(19):6459-73. PubMed ID: 21934190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of encapsulation damping on the excitation threshold for subharmonic generation from contrast microbubbles.
    Katiyar A; Sarkar K
    J Acoust Soc Am; 2012 Nov; 132(5):3576-85. PubMed ID: 23145637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic characterization of monodisperse lipid-coated microbubbles: relationship between size and shell viscoelastic properties.
    Parrales MA; Fernandez JM; Perez-Saborid M; Kopechek JA; Porter TM
    J Acoust Soc Am; 2014 Sep; 136(3):1077. PubMed ID: 25190383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accounting for the stability of microbubbles to multi-pulse excitation using a lipid-shedding model.
    O'Brien JP; Ovenden N; Stride E
    J Acoust Soc Am; 2011 Oct; 130(4):EL180-5. PubMed ID: 21974489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-precision acoustic measurements of the nonlinear dilatational elasticity of phospholipid coated monodisperse microbubbles.
    Segers T; Gaud E; Versluis M; Frinking P
    Soft Matter; 2018 Dec; 14(47):9550-9561. PubMed ID: 30357244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Material characterization of the encapsulation of an ultrasound contrast microbubble and its subharmonic response: strain-softening interfacial elasticity model.
    Paul S; Katiyar A; Sarkar K; Chatterjee D; Shi WT; Forsberg F
    J Acoust Soc Am; 2010 Jun; 127(6):3846-57. PubMed ID: 20550283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations.
    Doinikov AA; Haac JF; Dayton PA
    Ultrasonics; 2009 Feb; 49(2):263-8. PubMed ID: 18977009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear radial oscillations of encapsulated microbubbles subject to ultrasound: the effect of membrane constitutive law.
    Tsiglifis K; Pelekasis NA
    J Acoust Soc Am; 2008 Jun; 123(6):4059-70. PubMed ID: 18537358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chirp resonance spectroscopy of single lipid-coated microbubbles using an "acoustical camera".
    Renaud G; Bosch JG; van der Steen AF; de Jong N
    J Acoust Soc Am; 2012 Dec; 132(6):EL470-5. PubMed ID: 23231210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure-dependent attenuation and scattering of phospholipid-coated microbubbles at low acoustic pressures.
    Emmer M; Vos HJ; Goertz DE; van Wamel A; Versluis M; de Jong N
    Ultrasound Med Biol; 2009 Jan; 35(1):102-11. PubMed ID: 18829153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single Microbubble Measurements of Lipid Monolayer Viscoelastic Properties for Small-Amplitude Oscillations.
    Lum JS; Dove JD; Murray TW; Borden MA
    Langmuir; 2016 Sep; 32(37):9410-7. PubMed ID: 27552442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.