These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 26723365)

  • 1. Precedence based speech segregation in bilateral cochlear implant users.
    Hossain S; Montazeri V; Assmann PF; Litovsky RY
    J Acoust Soc Am; 2015 Dec; 138(6):EL545-50. PubMed ID: 26723365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bilateral Versus Unilateral Cochlear Implantation in Adult Listeners: Speech-On-Speech Masking and Multitalker Localization.
    Rana B; Buchholz JM; Morgan C; Sharma M; Weller T; Konganda SA; Shirai K; Kawano A
    Trends Hear; 2017; 21():2331216517722106. PubMed ID: 28752811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
    Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C
    Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric and acoustic harmonic integration predicts speech-in-noise performance in hybrid cochlear implant users.
    Bonnard D; Schwalje A; Gantz B; Choi I
    Hear Res; 2018 Sep; 367():223-230. PubMed ID: 29980380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of reverberant self- and overlap-masking on speech recognition in cochlear implant listeners.
    Desmond JM; Collins LM; Throckmorton CS
    J Acoust Soc Am; 2014 Jun; 135(6):EL304-10. PubMed ID: 24907838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing sound localization deficits in bilateral cochlear-implant users and vocoder simulations with normal-hearing listeners.
    Jones H; Kan A; Litovsky RY
    Trends Hear; 2014 Nov; 18():. PubMed ID: 25385244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral density affects the intelligibility of tone-vocoded speech: Implications for cochlear implant simulations.
    Rosen S; Zhang Y; Speers K
    J Acoust Soc Am; 2015 Sep; 138(3):EL318-23. PubMed ID: 26428833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Head shadow enhancement with low-frequency beamforming improves sound localization and speech perception for simulated bimodal listeners.
    Dieudonné B; Francart T
    Hear Res; 2018 Jun; 363():78-84. PubMed ID: 29555110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listeners.
    Churchill TH; Kan A; Goupell MJ; Litovsky RY
    J Acoust Soc Am; 2014 Sep; 136(3):1246. PubMed ID: 25190398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial Release From Masking in Simulated Cochlear Implant Users With and Without Access to Low-Frequency Acoustic Hearing.
    Williges B; Dietz M; Hohmann V; Jürgens T
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perception and coding of interaural time differences with bilateral cochlear implants.
    Laback B; Egger K; Majdak P
    Hear Res; 2015 Apr; 322():138-50. PubMed ID: 25456088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of insertion depth on spatial speech perception in noise for simulations of cochlear implants and single-sided deafness.
    Zhou X; Li H; Galvin JJ; Fu QJ; Yuan W
    Int J Audiol; 2017; 56(sup2):S41-S48. PubMed ID: 27367147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vowel identification by cochlear implant users: contributions of static and dynamic spectral cues.
    Donaldson GS; Rogers CL; Cardenas ES; Russell BA; Hanna NH
    J Acoust Soc Am; 2013 Oct; 134(4):3021-8. PubMed ID: 24116437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voice gender and the segregation of competing talkers: Perceptual learning in cochlear implant simulations.
    Sullivan JR; Assmann PF; Hossain S; Schafer EC
    J Acoust Soc Am; 2017 Mar; 141(3):1643. PubMed ID: 28372046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous suppression of noise and reverberation in cochlear implants using a ratio masking strategy.
    Hazrati O; Sadjadi SO; Loizou PC; Hansen JH
    J Acoust Soc Am; 2013 Nov; 134(5):3759-65. PubMed ID: 24180786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of congruent and incongruent visual cues on speech perception and brain activity in cochlear implant users.
    Song JJ; Lee HJ; Kang H; Lee DS; Chang SO; Oh SH
    Brain Struct Funct; 2015 Mar; 220(2):1109-25. PubMed ID: 24402676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pupillometry Reveals That Context Benefit in Speech Perception Can Be Disrupted by Later-Occurring Sounds, Especially in Listeners With Cochlear Implants.
    Winn MB; Moore AN
    Trends Hear; 2018; 22():2331216518808962. PubMed ID: 30375282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of early and late reflections on intelligibility of reverberated speech by cochlear implant listeners.
    Hu Y; Kokkinakis K
    J Acoust Soc Am; 2014 Jan; 135(1):EL22-8. PubMed ID: 24437852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of reverberant self-masking and overlap-masking effects on speech intelligibility by cochlear implant listeners (L).
    Kokkinakis K; Loizou PC
    J Acoust Soc Am; 2011 Sep; 130(3):1099-102. PubMed ID: 21895052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of adaptive dynamic range optimization in adverse listening conditions for cochlear implants.
    Ali H; Hazrati O; Tobey EA; Hansen JH
    J Acoust Soc Am; 2014 Sep; 136(3):EL242. PubMed ID: 25190428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.