These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. UNRES server for physics-based coarse-grained simulations and prediction of protein structure, dynamics and thermodynamics. Czaplewski C; Karczynska A; Sieradzan AK; Liwo A Nucleic Acids Res; 2018 Jul; 46(W1):W304-W309. PubMed ID: 29718313 [TBL] [Abstract][Full Text] [Related]
5. Enhanced sampling and free energy calculations for protein simulations. Liao Q Prog Mol Biol Transl Sci; 2020; 170():177-213. PubMed ID: 32145945 [TBL] [Abstract][Full Text] [Related]
6. Advances in free-energy-based simulations of protein folding and ligand binding. Perez A; Morrone JA; Simmerling C; Dill KA Curr Opin Struct Biol; 2016 Feb; 36():25-31. PubMed ID: 26773233 [TBL] [Abstract][Full Text] [Related]
7. Recent advances in transferable coarse-grained modeling of proteins. Kar P; Feig M Adv Protein Chem Struct Biol; 2014; 96():143-80. PubMed ID: 25443957 [TBL] [Abstract][Full Text] [Related]
8. Protocol for the development of coarse-grained structures for macromolecular simulation using GROMACS. Niranjan V; Rao P; Uttarkar A; Kumar J PLoS One; 2023; 18(8):e0288264. PubMed ID: 37535543 [TBL] [Abstract][Full Text] [Related]
9. Hybrid All-Atom/Coarse-Grained Simulations of Proteins by Direct Coupling of CHARMM and PRIMO Force Fields. Kar P; Feig M J Chem Theory Comput; 2017 Nov; 13(11):5753-5765. PubMed ID: 28992696 [TBL] [Abstract][Full Text] [Related]
10. Longer simulations sample larger subspaces of conformations while maintaining robust mechanisms of motion. Liu L; Gronenborn AM; Bahar I Proteins; 2012 Feb; 80(2):616-25. PubMed ID: 22105881 [TBL] [Abstract][Full Text] [Related]
12. Recent Advances in Coarse-Grained Models for Biomolecules and Their Applications. Singh N; Li W Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31375023 [TBL] [Abstract][Full Text] [Related]
13. Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites. Rzepiela AJ; Louhivuori M; Peter C; Marrink SJ Phys Chem Chem Phys; 2011 Jun; 13(22):10437-48. PubMed ID: 21494747 [TBL] [Abstract][Full Text] [Related]
14. The redundancy of NMR restraints can be used to accelerate the unfolding behavior of an SH3 domain during molecular dynamics simulations. Duclert-Savatier N; Martínez L; Nilges M; Malliavin TE BMC Struct Biol; 2011 Nov; 11():46. PubMed ID: 22115427 [TBL] [Abstract][Full Text] [Related]
15. Force probe simulations using an adaptive resolution scheme. Oestereich M; Gauss J; Diezemann G J Phys Condens Matter; 2021 Apr; 33(19):. PubMed ID: 33690183 [TBL] [Abstract][Full Text] [Related]
16. Predicting Protein-Ligand Binding and Unbinding Kinetics with Biased MD Simulations and Coarse-Graining of Dynamics: Current State and Challenges. Wolf S J Chem Inf Model; 2023 May; 63(10):2902-2910. PubMed ID: 37133392 [TBL] [Abstract][Full Text] [Related]
17. Frontiers in molecular dynamics simulations of DNA. Pérez A; Luque FJ; Orozco M Acc Chem Res; 2012 Feb; 45(2):196-205. PubMed ID: 21830782 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the interdomain motions in hen lysozyme using residual dipolar couplings as replica-averaged structural restraints in molecular dynamics simulations. De Simone A; Montalvao RW; Dobson CM; Vendruscolo M Biochemistry; 2013 Sep; 52(37):6480-6. PubMed ID: 23941501 [TBL] [Abstract][Full Text] [Related]
19. Systematic methods for defining coarse-grained maps in large biomolecules. Zhang Z Adv Exp Med Biol; 2015; 827():33-48. PubMed ID: 25387958 [TBL] [Abstract][Full Text] [Related]