These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 26723630)

  • 1. Behavior of rigid and deformable particles in deterministic lateral displacement devices with different post shapes.
    Zhang Z; Henry E; Gompper G; Fedosov DA
    J Chem Phys; 2015 Dec; 143(24):243145. PubMed ID: 26723630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorting cells by their dynamical properties.
    Henry E; Holm SH; Zhang Z; Beech JP; Tegenfeldt JO; Fedosov DA; Gompper G
    Sci Rep; 2016 Oct; 6():34375. PubMed ID: 27708337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetrical Deterministic Lateral Displacement Gaps for Dual Functions of Enhanced Separation and Throughput of Red Blood Cells.
    Zeming KK; Salafi T; Chen CH; Zhang Y
    Sci Rep; 2016 Mar; 6():22934. PubMed ID: 26961061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulation of critical particle size in asymmetrical deterministic lateral displacement.
    Rezaei B; Moghimi Zand M; Javidi R
    J Chromatogr A; 2021 Jul; 1649():462216. PubMed ID: 34034107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Study of Pillar Shapes in Deterministic Lateral Displacement Microfluidic Arrays for Spherical Particle Separation.
    Wei J; Song H; Shen Z; He Y; Xu X; Zhang Y; Li BN
    IEEE Trans Nanobioscience; 2015 Sep; 14(6):660-7. PubMed ID: 26011890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformation and dynamics of erythrocytes govern their traversal through microfluidic devices with a deterministic lateral displacement architecture.
    Chien W; Zhang Z; Gompper G; Fedosov DA
    Biomicrofluidics; 2019 Jul; 13(4):044106. PubMed ID: 31372194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DLD pillar shape design for efficient separation of spherical and non-spherical bioparticles.
    Ranjan S; Zeming KK; Jureen R; Fisher D; Zhang Y
    Lab Chip; 2014 Nov; 14(21):4250-62. PubMed ID: 25209150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breakdown of deterministic lateral displacement efficiency for non-dilute suspensions: A numerical study.
    Vernekar R; Krüger T
    Med Eng Phys; 2015 Sep; 37(9):845-54. PubMed ID: 26143149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deterministic lateral displacement for particle separation: a review.
    McGrath J; Jimenez M; Bridle H
    Lab Chip; 2014 Nov; 14(21):4139-58. PubMed ID: 25212386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional Simulation of Motion of Red Blood Cells with Deterministic Lateral Displacement Devices.
    Jiao Y; He Y; Jiao F
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31212873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deterministic Lateral Displacement Using Hexagonally Arranged, Bottom-Up-Inspired Micropost Arrays.
    Razaulla TM; Young OM; Alsharhan A; Sochol RD; Warren R
    Anal Chem; 2022 Feb; 94(4):1949-1957. PubMed ID: 35040640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anticipating Cutoff Diameters in Deterministic Lateral Displacement (DLD) Microfluidic Devices for an Optimized Particle Separation.
    Pariset E; Pudda C; Boizot F; Verplanck N; Berthier J; Thuaire A; Agache V
    Small; 2017 Oct; 13(37):. PubMed ID: 28783259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of angle-of-attacks on deterministic lateral displacement (DLD) with symmetric airfoil pillars.
    Ahasan K; Landry CM; Chen X; Kim JH
    Biomed Microdevices; 2020 Jun; 22(2):42. PubMed ID: 32495156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the transport of particles/cells in high-throughput deterministic lateral displacement devices: Implications for circulating tumor cell separation.
    Aghilinejad A; Aghaamoo M; Chen X
    Biomicrofluidics; 2019 May; 13(3):034112. PubMed ID: 31186821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deformability-based red blood cell separation in deterministic lateral displacement devices-A simulation study.
    Krüger T; Holmes D; Coveney PV
    Biomicrofluidics; 2014 Sep; 8(5):054114. PubMed ID: 25584112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of Biological Particles in a Modular Platform of Cascaded Deterministic Lateral Displacement Modules.
    Pariset E; Parent C; Fouillet Y; François B; Verplanck N; Revol-Cavalier F; Thuaire A; Agache V
    Sci Rep; 2018 Dec; 8(1):17762. PubMed ID: 30531826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle separation using virtual deterministic lateral displacement (vDLD).
    Collins DJ; Alan T; Neild A
    Lab Chip; 2014 May; 14(9):1595-603. PubMed ID: 24638896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic lift of vesicles and red blood cells in flow--from Fåhræus & Lindqvist to microfluidic cell sorting.
    Geislinger TM; Franke T
    Adv Colloid Interface Sci; 2014 Jun; 208():161-76. PubMed ID: 24674656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AC electrokinetic biased deterministic lateral displacement for tunable particle separation.
    Calero V; Garcia-Sanchez P; Honrado C; Ramos A; Morgan H
    Lab Chip; 2019 Apr; 19(8):1386-1396. PubMed ID: 30912779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of deformable particles in deterministic lateral displacement devices.
    Quek R; Le DV; Chiam KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056301. PubMed ID: 21728641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.