These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 26723630)

  • 21. A Review on Deterministic Lateral Displacement for Particle Separation and Detection.
    Salafi T; Zhang Y; Zhang Y
    Nanomicro Lett; 2019 Sep; 11(1):77. PubMed ID: 34138050
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gravity driven deterministic lateral displacement for particle separation in microfluidic devices.
    Devendra R; Drazer G
    Anal Chem; 2012 Dec; 84(24):10621-7. PubMed ID: 23137317
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anisotropic permeability in deterministic lateral displacement arrays.
    Vernekar R; Krüger T; Loutherback K; Morton K; W Inglis D
    Lab Chip; 2017 Sep; 17(19):3318-3330. PubMed ID: 28861573
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Purification of complex samples: Implementation of a modular and reconfigurable droplet-based microfluidic platform with cascaded deterministic lateral displacement separation modules.
    Pariset E; Pudda C; Boizot F; Verplanck N; Revol-Cavalier F; Berthier J; Thuaire A; Agache V
    PLoS One; 2018; 13(5):e0197629. PubMed ID: 29768490
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of rigid cells on blood viscosity: linking rheology and sickle cell anemia.
    Perazzo A; Peng Z; Young YN; Feng Z; Wood DK; Higgins JM; Stone HA
    Soft Matter; 2022 Jan; 18(3):554-565. PubMed ID: 34931640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Droplet size based separation by deterministic lateral displacement-separating droplets by cell--induced shrinking.
    Joensson HN; Uhlén M; Svahn HA
    Lab Chip; 2011 Apr; 11(7):1305-10. PubMed ID: 21321749
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of process parameters on separation efficiency in a deterministic lateral displacement device.
    Aghajanloo B; Inglis DW; Ejeian F; Tehrani AF; Esfahani MHN; Saghafian M; Canavese G; Marasso SL
    J Chromatogr A; 2022 Aug; 1678():463295. PubMed ID: 35878543
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tipping the balance of deterministic lateral displacement devices using dielectrophoresis.
    Beech JP; Jönsson P; Tegenfeldt JO
    Lab Chip; 2009 Sep; 9(18):2698-706. PubMed ID: 19704986
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MOPSA: A microfluidics-optimized particle simulation algorithm.
    Wang J; Rodgers VGJ; Brisk P; Grover WH
    Biomicrofluidics; 2017 May; 11(3):034121. PubMed ID: 28713477
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Size-Based Separation of Particles and Cells Utilizing Viscoelastic Effects in Straight Microchannels.
    Liu C; Xue C; Chen X; Shan L; Tian Y; Hu G
    Anal Chem; 2015 Jun; 87(12):6041-8. PubMed ID: 25989347
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multidirectional sorting modes in deterministic lateral displacement devices.
    Long BR; Heller M; Beech JP; Linke H; Bruus H; Tegenfeldt JO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046304. PubMed ID: 18999523
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combining DC and AC electric fields with deterministic lateral displacement for micro- and nano-particle separation.
    Calero V; Garcia-Sanchez P; Ramos A; Morgan H
    Biomicrofluidics; 2019 Sep; 13(5):054110. PubMed ID: 31673301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combining Electrostatic, Hindrance and Diffusive Effects for Predicting Particle Transport and Separation Efficiency in Deterministic Lateral Displacement Microfluidic Devices.
    Biagioni V; Balestrieri G; Adrover A; Cerbelli S
    Biosensors (Basel); 2020 Sep; 10(9):. PubMed ID: 32947949
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Topology optimization based deterministic lateral displacement array design for cell separation.
    Tang H; Niu J; Pan X; Jin H; Lin S; Cui D
    J Chromatogr A; 2022 Aug; 1679():463384. PubMed ID: 35940060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Blood Cell Separation Using Polypropylene-Based Microfluidic Devices Based on Deterministic Lateral Displacement.
    Matsuura K; Takata K
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837938
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of critical parameters in platelet margination.
    Reasor DA; Mehrabadi M; Ku DN; Aidun CK
    Ann Biomed Eng; 2013 Feb; 41(2):238-49. PubMed ID: 22965639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low modulus biomimetic microgel particles with high loading of hemoglobin.
    Chen K; Merkel TJ; Pandya A; Napier ME; Luft JC; Daniel W; Sheiko S; DeSimone JM
    Biomacromolecules; 2012 Sep; 13(9):2748-59. PubMed ID: 22852860
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Liquid-based stationary phase for deterministic lateral displacement separation in microfluidics.
    Du S; Shojaei-Zadeh S; Drazer G
    Soft Matter; 2017 Oct; 13(41):7649-7656. PubMed ID: 28990019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scaling of deterministic lateral displacement devices to a single column of bumping obstacles.
    Liang W; Austin RH; Sturm JC
    Lab Chip; 2020 Sep; 20(18):3461-3467. PubMed ID: 32930700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deterministic Lateral Displacement Microfluidic Chip for Minicell Purification.
    Sherbaz A; Konak BMK; Pezeshkpour P; Di Ventura B; Rapp BE
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334657
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.