These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 26723638)

  • 1. Distributions of experimental protein structures on coarse-grained free energy landscapes.
    Sankar K; Liu J; Wang Y; Jernigan RL
    J Chem Phys; 2015 Dec; 143(24):243153. PubMed ID: 26723638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring free energy landscapes of large conformational changes: molecular dynamics with excited normal modes.
    Costa MG; Batista PR; Bisch PM; Perahia D
    J Chem Theory Comput; 2015 Jun; 11(6):2755-67. PubMed ID: 26575568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing Multiple Pathways in T4 Lysozyme Substep Conformational Motions by Single-Molecule Enzymology and Modeling.
    Lu M; Lu HP
    J Phys Chem B; 2017 May; 121(19):5017-5024. PubMed ID: 28425708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coarse-grained simulations of transitions in the E2-to-E1 conformations for Ca ATPase (SERCA) show entropy-enthalpy compensation.
    Nagarajan A; Andersen JP; Woolf TB
    J Mol Biol; 2012 Sep; 422(4):575-93. PubMed ID: 22684148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directional Force Originating from ATP Hydrolysis Drives the GroEL Conformational Change.
    Liu J; Sankar K; Wang Y; Jia K; Jernigan RL
    Biophys J; 2017 Apr; 112(8):1561-1570. PubMed ID: 28445748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A structural mechanism for calcium transporter headpiece closure.
    Smolin N; Robia SL
    J Phys Chem B; 2015 Jan; 119(4):1407-15. PubMed ID: 25531267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the folded state and mechanical unfolding pathways of T4 lysozyme using all-atom and coarse-grained molecular simulation.
    Zheng W; Glenn P
    J Chem Phys; 2015 Jan; 142(3):035101. PubMed ID: 25612731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluctuation Flooding Method (FFM) for accelerating conformational transitions of proteins.
    Harada R; Takano Y; Shigeta Y
    J Chem Phys; 2014 Mar; 140(12):125103. PubMed ID: 24697482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical domain-motion analysis of conformational changes in sarcoplasmic reticulum Ca²⁺-ATPase.
    Kobayashi C; Koike R; Ota M; Sugita Y
    Proteins; 2015 Apr; 83(4):746-56. PubMed ID: 25641564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel Cascade Selection Molecular Dynamics (PaCS-MD) to generate conformational transition pathway.
    Harada R; Kitao A
    J Chem Phys; 2013 Jul; 139(3):035103. PubMed ID: 23883057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction and validation of protein intermediate states from structurally rich ensembles and coarse-grained simulations.
    Orellana L; Yoluk O; Carrillo O; Orozco M; Lindahl E
    Nat Commun; 2016 Aug; 7():12575. PubMed ID: 27578633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capturing Invisible Motions in the Transition from Ground to Rare Excited States of T4 Lysozyme L99A.
    Schiffer JM; Feher VA; Malmstrom RD; Sida R; Amaro RE
    Biophys J; 2016 Oct; 111(8):1631-1640. PubMed ID: 27760351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping transiently formed and sparsely populated conformations on a complex energy landscape.
    Wang Y; Papaleo E; Lindorff-Larsen K
    Elife; 2016 Aug; 5():. PubMed ID: 27552057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coarse-graining protein structures with local multivariate features from molecular dynamics.
    Zhang Z; Wriggers W
    J Phys Chem B; 2008 Nov; 112(44):14026-35. PubMed ID: 18855436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sparsity-weighted outlier FLOODing (OFLOOD) method: Efficient rare event sampling method using sparsity of distribution.
    Harada R; Nakamura T; Shigeta Y
    J Comput Chem; 2016 Mar; 37(8):724-38. PubMed ID: 26611770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of peptides and proteins with amplified collective motions.
    Zhang Z; Shi Y; Liu H
    Biophys J; 2003 Jun; 84(6):3583-93. PubMed ID: 12770868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting order of conformational changes during protein conformational transitions using an interpolated elastic network model.
    Tekpinar M; Zheng W
    Proteins; 2010 Aug; 78(11):2469-81. PubMed ID: 20602461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Monte Carlo Methods for Modeling Proteins Including Computation of Absolute Free Energies of Binding.
    Cabeza de Vaca I; Qian Y; Vilseck JZ; Tirado-Rives J; Jorgensen WL
    J Chem Theory Comput; 2018 Jun; 14(6):3279-3288. PubMed ID: 29708338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nontargeted Parallel Cascade Selection Molecular Dynamics Using Time-Localized Prediction of Conformational Transitions in Protein Dynamics.
    Harada R; Sladek V; Shigeta Y
    J Chem Theory Comput; 2019 Sep; 15(9):5144-5153. PubMed ID: 31411882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.