These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. A two-dimensional mathematical model of non-linear dual-sorption of percutaneous drug absorption. George K Biomed Eng Online; 2005 Jul; 4():40. PubMed ID: 15992411 [TBL] [Abstract][Full Text] [Related]
44. Bennett's acceptance ratio and histogram analysis methods enhanced by umbrella sampling along a reaction coordinate in configurational space. Kim I; Allen TW J Chem Phys; 2012 Apr; 136(16):164103. PubMed ID: 22559466 [TBL] [Abstract][Full Text] [Related]
45. Mean first passage times reconstruct the slowest relaxations in potential energy landscapes of nanoclusters. Okushima T; Niiyama T; Ikeda KS; Shimizu Y Phys Rev E; 2019 Sep; 100(3-1):032311. PubMed ID: 31639985 [TBL] [Abstract][Full Text] [Related]
46. Molecular simulations of droplet coalescence in oil/water/surfactant systems. Rekvig L; Frenkel D J Chem Phys; 2007 Oct; 127(13):134701. PubMed ID: 17919037 [TBL] [Abstract][Full Text] [Related]
47. Nucleation in scale-free networks. Chen H; Shen C; Hou Z; Xin H Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031110. PubMed ID: 21517457 [TBL] [Abstract][Full Text] [Related]
48. Simulation study of free-energy barriers in the wetting transition of an oily fluid on a rough surface with reentrant geometry. Savoy ES; Escobedo FA Langmuir; 2012 Nov; 28(46):16080-90. PubMed ID: 23095106 [TBL] [Abstract][Full Text] [Related]
49. The properties of bio-energy transport and influence of structure nonuniformity and temperature of systems on energy transport along polypeptide chains. Pang XF Prog Biophys Mol Biol; 2012 Jan; 108(1-2):1-46. PubMed ID: 21951575 [TBL] [Abstract][Full Text] [Related]
50. Identifying low variance pathways for free energy calculations of molecular transformations in solution phase. Pham TT; Shirts MR J Chem Phys; 2011 Jul; 135(3):034114. PubMed ID: 21786994 [TBL] [Abstract][Full Text] [Related]
51. Effect of surface free energies on the heterogeneous nucleation of water droplet: a molecular dynamics simulation approach. Xu W; Lan Z; Peng BL; Wen RF; Ma XH J Chem Phys; 2015 Feb; 142(5):054701. PubMed ID: 25662654 [TBL] [Abstract][Full Text] [Related]
52. Crystal nucleation of hard spheres using molecular dynamics, umbrella sampling, and forward flux sampling: a comparison of simulation techniques. Filion L; Hermes M; Ni R; Dijkstra M J Chem Phys; 2010 Dec; 133(24):244115. PubMed ID: 21197984 [TBL] [Abstract][Full Text] [Related]
53. Two-step vapor-crystal nucleation close below triple point. van Meel JA; Page AJ; Sear RP; Frenkel D J Chem Phys; 2008 Nov; 129(20):204505. PubMed ID: 19045871 [TBL] [Abstract][Full Text] [Related]
54. Reaction rate of propene pyrolysis. Han P; Su K; Liu Y; Wang Y; Wang X; Zeng Q; Cheng L; Zhang L J Comput Chem; 2011 Oct; 32(13):2745-55. PubMed ID: 21717476 [TBL] [Abstract][Full Text] [Related]
55. Enhanced sampling of nonequilibrium steady states. Dickson A; Dinner AR Annu Rev Phys Chem; 2010; 61():441-59. PubMed ID: 20367083 [TBL] [Abstract][Full Text] [Related]
56. High-precision work distributions for extreme nonequilibrium processes in large systems. Hartmann AK Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052103. PubMed ID: 25353736 [TBL] [Abstract][Full Text] [Related]
57. Molecular origins of homogeneous crystal nucleation. Yi P; Rutledge GC Annu Rev Chem Biomol Eng; 2012; 3():157-82. PubMed ID: 22468601 [TBL] [Abstract][Full Text] [Related]
59. Model for the nucleation mechanism of protein folding. Djikaev YS; Ruckenstein E J Phys Chem B; 2007 Feb; 111(4):886-97. PubMed ID: 17249833 [TBL] [Abstract][Full Text] [Related]
60. Kinetic reconstruction of free energies as a function of multiple order parameters. Goswami Y; Sastry S J Chem Phys; 2023 Apr; 158(14):144502. PubMed ID: 37061464 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]