These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 26723706)
1. Topological constraints of network chains in telechelic associative polymer gels. Li S; Chen J; Xu D; Shi T J Chem Phys; 2015 Dec; 143(24):244902. PubMed ID: 26723706 [TBL] [Abstract][Full Text] [Related]
2. Heterogeneity in polymer melts from melting of polymer crystals. Rastogi S; Lippits DR; Peters GW; Graf R; Yao Y; Spiess HW Nat Mater; 2005 Aug; 4(8):635-41. PubMed ID: 16041376 [TBL] [Abstract][Full Text] [Related]
3. Topological Analysis and Recovery of Entanglements in Polymer Melts. Ubertini MA; Rosa A Macromolecules; 2023 May; 56(9):3354-3362. PubMed ID: 37181245 [TBL] [Abstract][Full Text] [Related]
7. Analysis of entanglement length and segmental order parameter in polymer networks. Lang M; Sommer JU Phys Rev Lett; 2010 Apr; 104(17):177801. PubMed ID: 20482143 [TBL] [Abstract][Full Text] [Related]
8. Entanglements in quiescent and sheared polymer melts. Yamamoto R; Onuki A Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 1):041801. PubMed ID: 15600427 [TBL] [Abstract][Full Text] [Related]
9. Influence of molecular architecture on the entanglement network: topological analysis of linear, long- and short-chain branched polyethylene melts via Monte Carlo simulations. Jeong SH; Kim JM; Yoon J; Tzoumanekas C; Kröger M; Baig C Soft Matter; 2016 Apr; 12(16):3770-86. PubMed ID: 26997526 [TBL] [Abstract][Full Text] [Related]
10. Clustering of Entanglement Points in Highly Strained Polymer Melts. Hsu HP; Kremer K Macromolecules; 2019 Sep; 52(17):6756-6772. PubMed ID: 31534275 [TBL] [Abstract][Full Text] [Related]
11. Single chain dynamics in polymer networks: a Monte Carlo study. Nedelcu S; Sommer JU J Chem Phys; 2009 May; 130(20):204902. PubMed ID: 19485476 [TBL] [Abstract][Full Text] [Related]
12. Effect of Bidispersity on Structure and Entanglement of Confined Polymer Films. Li S; Ding M; Shi T J Phys Chem B; 2017 Aug; 121(31):7502-7507. PubMed ID: 28703586 [TBL] [Abstract][Full Text] [Related]
13. Simulations on the number of entanglements of a polymer network using knot theory. Michalke W; Lang M; Kreitmeier S; Göritz D Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):012801. PubMed ID: 11461310 [TBL] [Abstract][Full Text] [Related]
14. Analytic expressions for the statistics of the primitive-path length in entangled polymers. Khaliullin RN; Schieber JD Phys Rev Lett; 2008 May; 100(18):188302. PubMed ID: 18518421 [TBL] [Abstract][Full Text] [Related]
15. A highly coarse-grained model to simulate entangled polymer melts. Zhu YL; Liu H; Lu ZY J Chem Phys; 2012 Apr; 136(14):144903. PubMed ID: 22502546 [TBL] [Abstract][Full Text] [Related]
16. Characterization of entanglements in glassy polymeric ensembles using the Gaussian linking number. Ahmad R; Paul S; Basu S Phys Rev E; 2020 Feb; 101(2-1):022503. PubMed ID: 32168721 [TBL] [Abstract][Full Text] [Related]
18. Nanoparticle effect on the dynamics of polymer chains and their entanglement network. Li Y; Kröger M; Liu WK Phys Rev Lett; 2012 Sep; 109(11):118001. PubMed ID: 23005677 [TBL] [Abstract][Full Text] [Related]
19. Local Chain Segregation and Entanglements in a Confined Polymer Melt. Lee NK; Diddens D; Meyer H; Johner A Phys Rev Lett; 2017 Feb; 118(6):067802. PubMed ID: 28234517 [TBL] [Abstract][Full Text] [Related]
20. Hopping Diffusion of Nanoparticles in Polymer Matrices. Cai LH; Panyukov S; Rubinstein M Macromolecules; 2015 Feb; 48(3):847-862. PubMed ID: 25691803 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]