BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

755 related articles for article (PubMed ID: 26723910)

  • 1. New frontiers in nanotoxicology: Gut microbiota/microbiome-mediated effects of engineered nanomaterials.
    Pietroiusti A; Magrini A; Campagnolo L
    Toxicol Appl Pharmacol; 2016 May; 299():90-5. PubMed ID: 26723910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do Engineered Nanomaterials Affect Immune Responses by Interacting With Gut Microbiota?
    Tang M; Li S; Wei L; Hou Z; Qu J; Li L
    Front Immunol; 2021; 12():684605. PubMed ID: 34594323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The unrecognized occupational relevance of the interaction between engineered nanomaterials and the gastro-intestinal tract: a consensus paper from a multidisciplinary working group.
    Pietroiusti A; Bergamaschi E; Campagna M; Campagnolo L; De Palma G; Iavicoli S; Leso V; Magrini A; Miragoli M; Pedata P; Palombi L; Iavicoli I
    Part Fibre Toxicol; 2017 Nov; 14(1):47. PubMed ID: 29178961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of nanosilver on gut microbiota: a vulnerable link.
    Dahiya DK; Renuka ; Puniya AK
    Future Microbiol; 2018 Mar; 13():483-492. PubMed ID: 29264949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gut Dysbiosis in Animals Due to Environmental Chemical Exposures.
    Rosenfeld CS
    Front Cell Infect Microbiol; 2017; 7():396. PubMed ID: 28936425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of foodborne inorganic nanoparticles on the gut microbiota-immune axis: potential consequences for host health.
    Lamas B; Martins Breyner N; Houdeau E
    Part Fibre Toxicol; 2020 Jun; 17(1):19. PubMed ID: 32487227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the human intestinal microbiome on obesity and metabolic dysfunction.
    Tilg H; Adolph TE
    Curr Opin Pediatr; 2015 Aug; 27(4):496-501. PubMed ID: 26087428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhaled nanomaterials and the respiratory microbiome: clinical, immunological and toxicological perspectives.
    Poh TY; Ali NABM; Mac Aogáin M; Kathawala MH; Setyawati MI; Ng KW; Chotirmall SH
    Part Fibre Toxicol; 2018 Nov; 15(1):46. PubMed ID: 30458822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breaking down the gut microbiome composition in multiple sclerosis.
    Budhram A; Parvathy S; Kremenchutzky M; Silverman M
    Mult Scler; 2017 Apr; 23(5):628-636. PubMed ID: 27956557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gut Microbiome and Obesity: A Plausible Explanation for Obesity.
    Sanmiguel C; Gupta A; Mayer EA
    Curr Obes Rep; 2015 Jun; 4(2):250-61. PubMed ID: 26029487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gut microbiome interactions with graphene based nanomaterials: Challenges and opportunities.
    Bantun F; Singh R; Alkhanani MF; Almalki AH; Alshammary F; Khan S; Haque S; Srivastava M
    Sci Total Environ; 2022 Jul; 830():154789. PubMed ID: 35341865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecological nanotoxicology: integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels.
    Holden PA; Nisbet RM; Lenihan HS; Miller RJ; Cherr GN; Schimel JP; Gardea-Torresdey JL
    Acc Chem Res; 2013 Mar; 46(3):813-22. PubMed ID: 23039211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation of Nanomaterials and Its Implications in Gut Nanotoxicology.
    Setyawati MI; Zhao Z; Ng KW
    Small; 2020 Sep; 16(36):e2001246. PubMed ID: 32495486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of Gut Microbiota-Brain Axis by Probiotics, Prebiotics, and Diet.
    Liu X; Cao S; Zhang X
    J Agric Food Chem; 2015 Sep; 63(36):7885-95. PubMed ID: 26306709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of Gut Microbiota in the development of obesity and Diabetes.
    Baothman OA; Zamzami MA; Taher I; Abubaker J; Abu-Farha M
    Lipids Health Dis; 2016 Jun; 15():108. PubMed ID: 27317359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated methodology for assessing the impact of food matrix and gastrointestinal effects on the biokinetics and cellular toxicity of ingested engineered nanomaterials.
    DeLoid GM; Wang Y; Kapronezai K; Lorente LR; Zhang R; Pyrgiotakis G; Konduru NV; Ericsson M; White JC; De La Torre-Roche R; Xiao H; McClements DJ; Demokritou P
    Part Fibre Toxicol; 2017 Oct; 14(1):40. PubMed ID: 29029643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of the gut microbiota, prebiotics, and probiotics on human health and disease.
    Lin CS; Chang CJ; Lu CC; Martel J; Ojcius DM; Ko YF; Young JD; Lai HC
    Biomed J; 2014; 37(5):259-68. PubMed ID: 25179725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the role of gut microbiome in metabolic disease risk.
    Sanz Y; Olivares M; Moya-Pérez Á; Agostoni C
    Pediatr Res; 2015 Jan; 77(1-2):236-44. PubMed ID: 25314581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants.
    Musee N; Thwala M; Nota N
    J Environ Monit; 2011 May; 13(5):1164-83. PubMed ID: 21505709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Healthy gut microbiota and long term health.
    Vandenplas Y
    Benef Microbes; 2015; 6(2):173-9. PubMed ID: 25467194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.