These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 26724025)
1. Development of a miniature microwave electron cyclotron resonance plasma ion thruster for exospheric micro-propulsion. Dey I; Toyoda Y; Yamamoto N; Nakashima H Rev Sci Instrum; 2015 Dec; 86(12):123505. PubMed ID: 26724025 [TBL] [Abstract][Full Text] [Related]
2. Electric field measurement in microwave discharge ion thruster with electro-optic probe. Ise T; Tsukizaki R; Togo H; Koizumi H; Kuninaka H Rev Sci Instrum; 2012 Dec; 83(12):124702. PubMed ID: 23278009 [TBL] [Abstract][Full Text] [Related]
3. Production of electron cyclotron resonance plasma by using multifrequencies microwaves and active beam profile control on a large bore electron cyclotron resonance ion source with permanent magnets. Kato Y; Watanabe T; Matsui Y; Hirai Y; Kutsumi O; Sakamoto N; Sato F; Iida T Rev Sci Instrum; 2010 Feb; 81(2):02A313. PubMed ID: 20192334 [TBL] [Abstract][Full Text] [Related]
4. Development and research of a coaxial microwave plasma thruster. Yang J; Xu Y; Tang J; Mao G; Yang T; Tan X Rev Sci Instrum; 2008 Aug; 79(8):083503. PubMed ID: 19044345 [TBL] [Abstract][Full Text] [Related]
5. Measurement of xenon plasma properties in an ion thruster using laser Thomson scattering technique. Yamamoto N; Tomita K; Sugita K; Kurita T; Nakashima H; Uchino K Rev Sci Instrum; 2012 Jul; 83(7):073106. PubMed ID: 22852670 [TBL] [Abstract][Full Text] [Related]
6. High intensity electron cyclotron resonance proton source for low energy high intensity proton accelerator. Roychowdhury P; Chakravarthy DP Rev Sci Instrum; 2009 Dec; 80(12):123305. PubMed ID: 20059138 [TBL] [Abstract][Full Text] [Related]
7. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap. Nikolaev AG; Savkin KP; Oks EM; Vizir AV; Yushkov GY; Vodopyanov AV; Izotov IV; Mansfeld DA Rev Sci Instrum; 2012 Feb; 83(2):02A309. PubMed ID: 22380156 [TBL] [Abstract][Full Text] [Related]
8. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source. Roychowdhury P; Mishra L; Kewlani H; Patil DS; Mittal KC Rev Sci Instrum; 2014 Mar; 85(3):033303. PubMed ID: 24689571 [TBL] [Abstract][Full Text] [Related]
9. A new 18 GHz room temperature electron cyclotron resonance ion source for highly charged ion beams. Koivisto H; Ikonen A; Kalvas T; Kosonen S; Kronholm R; Marttinen M; Tarvainen O; Toivanen V Rev Sci Instrum; 2020 Feb; 91(2):023303. PubMed ID: 32113443 [TBL] [Abstract][Full Text] [Related]
10. Ultracompact/ultralow power electron cyclotron resonance ion source for multipurpose applications. Sortais P; Lamy T; Médard J; Angot J; Latrasse L; Thuillier T Rev Sci Instrum; 2010 Feb; 81(2):02B314. PubMed ID: 20192437 [TBL] [Abstract][Full Text] [Related]
11. Plasma studies of the permanent magnet electron cyclotron resonance ion source at Peking University. Ren HT; Peng SX; Xu Y; Zhao J; Lu PN; Chen J; Zhang AL; Zhang T; Guo ZY; Chen JE Rev Sci Instrum; 2014 Feb; 85(2):02A927. PubMed ID: 24593506 [TBL] [Abstract][Full Text] [Related]
12. High current H2(+) and H3(+) beam generation by pulsed 2.45 GHz electron cyclotron resonance ion source. Xu Y; Peng S; Ren H; Zhao J; Chen J; Zhang A; Zhang T; Guo Z; Chen J Rev Sci Instrum; 2014 Feb; 85(2):02A943. PubMed ID: 24593522 [TBL] [Abstract][Full Text] [Related]
13. First results of the 2.45 GHz Oshima electron cyclotron resonance ion source. Asaji T; Nakamura T; Furuse M; Hitobo T; Uchida T; Muramatsu M; Kato Y Rev Sci Instrum; 2016 Feb; 87(2):02A730. PubMed ID: 26931948 [TBL] [Abstract][Full Text] [Related]
14. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL. Zhao HW; Sun LT; Zhang XZ; Guo XH; Cao Y; Lu W; Zhang ZM; Yuan P; Song MT; Zhao HY; Jin T; Shang Y; Zhan WL; Wei BW; Xie DZ Rev Sci Instrum; 2008 Feb; 79(2 Pt 2):02A315. PubMed ID: 18315105 [TBL] [Abstract][Full Text] [Related]
15. Validation of a torsional balance for thrust measurements of Hall effect and microwave-based space propulsion systems. Masillo S; Stubbing J; Swar K; Staab D; Garbayo A; Lucca Fabris A Rev Sci Instrum; 2022 Nov; 93(11):114501. PubMed ID: 36461544 [TBL] [Abstract][Full Text] [Related]
16. Design of a compact, permanent magnet electron cyclotron resonance ion source for proton and H2(+) beam production. Jia X; Zhang T; Luo S; Wang C; Zheng X; Yin Z; Zhong J; Wu L; Qin J Rev Sci Instrum; 2010 Feb; 81(2):02A321. PubMed ID: 20192342 [TBL] [Abstract][Full Text] [Related]
17. Hydrogen negative ion production in a 14 GHz electron cyclotron resonance compact ion source with a cone-shaped magnetic filter. Ichikawa T; Kasuya T; Kenmotsu T; Maeno S; Nishiura M; Shimozuma T; Yamaoka H; Wada M Rev Sci Instrum; 2014 Feb; 85(2):02B132. PubMed ID: 24593572 [TBL] [Abstract][Full Text] [Related]
18. Microwave ion source for high-current implanter. Sakudo N; Tokiguchi K; Koike H; Kanomata I Rev Sci Instrum; 1978 Jul; 49(7):940. PubMed ID: 18699229 [TBL] [Abstract][Full Text] [Related]
19. Enhanced production of electron cyclotron resonance plasma by exciting selective microwave mode on a large-bore electron cyclotron resonance ion source with permanent magnet. Kimura D; Kurisu Y; Nozaki D; Yano K; Imai Y; Kumakura S; Sato F; Kato Y; Iida T Rev Sci Instrum; 2014 Feb; 85(2):02A938. PubMed ID: 24593517 [TBL] [Abstract][Full Text] [Related]
20. Thirty percent conversion efficiency from radiofrequency power to thrust energy in a magnetic nozzle plasma thruster. Takahashi K Sci Rep; 2022 Nov; 12(1):18618. PubMed ID: 36357485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]