These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26724058)

  • 1. Steady-state low thermal resistance characterization apparatus: The bulk thermal tester.
    Burg BR; Kolly M; Blasakis N; Gschwend D; Zürcher J; Brunschwiler T
    Rev Sci Instrum; 2015 Dec; 86(12):124903. PubMed ID: 26724058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple differential steady-state method to measure the thermal conductivity of solid bulk materials with high accuracy.
    Kraemer D; Chen G
    Rev Sci Instrum; 2014 Feb; 85(2):025108. PubMed ID: 24593397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-precision apparatus for the characterization of thermal interface materials.
    Kempers R; Kolodner P; Lyons A; Robinson AJ
    Rev Sci Instrum; 2009 Sep; 80(9):095111. PubMed ID: 19791968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High resolution steady-state measurements of thermal contact resistance across thermal interface material junctions.
    Warzoha RJ; Donovan BF
    Rev Sci Instrum; 2017 Sep; 88(9):094901. PubMed ID: 28964213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method.
    Liu J; Zhu J; Tian M; Gu X; Schmidt A; Yang R
    Rev Sci Instrum; 2013 Mar; 84(3):034902. PubMed ID: 23556838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A laser-based Ångstrom method for in-plane thermal characterization of isotropic and anisotropic materials using infrared imaging.
    Gaitonde AU; Candadai AA; Weibel JA; Marconnet AM
    Rev Sci Instrum; 2023 Jul; 94(7):. PubMed ID: 37458538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions.
    Liang XM; Ding W; Chen HH; Shu Z; Zhao G; Zhang HF; Gao D
    Biomed Microdevices; 2011 Oct; 13(5):923-8. PubMed ID: 21710370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous measurement of all thermoelectric properties of bulk materials in the temperature range 300-600 K.
    Kolb H; Dasgupta T; Zabrocki K; Mueller E; de Boor J
    Rev Sci Instrum; 2015 Jul; 86(7):073901. PubMed ID: 26233393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Measurement of Thermal Conductivity by SThM Technique: Measurements, Calibration Protocols and Uncertainty Evaluation.
    Fleurence N; Demeyer S; Allard A; Douri S; Hay B
    Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal properties measurement of dry bulk materials with a cylindrical three layers device.
    Jannot Y; Degiovanni A
    Rev Sci Instrum; 2013 Sep; 84(9):094901. PubMed ID: 24089849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steady-state methods for measuring in-plane thermal conductivity of thin films for heat spreading applications.
    Hines NJ; Yates L; Foley BM; Cheng Z; Bougher TL; Goorsky MS; Hobart KD; Feygelson TI; Tadjer MJ; Graham S
    Rev Sci Instrum; 2021 Apr; 92(4):044907. PubMed ID: 34243450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient Thermal Response of a Guarded-Hot-Plate Apparatus for Operation Over an Extended Temperature Range.
    Thomas WC; Zarr RR
    J Res Natl Inst Stand Technol; 2018; 123():1-24. PubMed ID: 34877128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and construction of a new steady-state apparatus for medium thermal conductivity measurement at high temperature.
    Wang Y; Xiao P; Dai J
    Rev Sci Instrum; 2017 Oct; 88(10):104903. PubMed ID: 29092478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic measurements of submilligram bulk samples using a membrane-based "calorimeter on a chip".
    Cooke DW; Michel KJ; Hellman F
    Rev Sci Instrum; 2008 May; 79(5):053902. PubMed ID: 18513074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A noncontact thermal microprobe for local thermal conductivity measurement.
    Zhang Y; Castillo EE; Mehta RJ; Ramanath G; Borca-Tasciuc T
    Rev Sci Instrum; 2011 Feb; 82(2):024902. PubMed ID: 21361625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High temperature thermal conductivity of platinum microwire by 3ω method.
    Bhatta RP; Annamalai S; Mohr RK; Brandys M; Pegg IL; Dutta B
    Rev Sci Instrum; 2010 Nov; 81(11):114904. PubMed ID: 21133493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modified data analysis for thermal conductivity measurements of polycrystalline silicon microbridges using a steady state Joule heating technique.
    Sayer RA; Piekos ES; Phinney LM
    Rev Sci Instrum; 2012 Dec; 83(12):124904. PubMed ID: 23278015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal-Conductivity Apparatus for Steady-State, Comparative Measurement of Ceramic Coatings.
    Slifka AJ
    J Res Natl Inst Stand Technol; 2000; 105(4):591-605. PubMed ID: 27551628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the van der Pauw's method applied to the measurement of low thermal conductivity materials.
    Morales C; Flores E; Bodega J; Leardini F; Ferrer IJ; Ares JR; Sánchez C
    Rev Sci Instrum; 2016 Aug; 87(8):084902. PubMed ID: 27587145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of the Thermal Conductivity of Unfrozen and Frozen Food Materials by a Steady State Method with Coaxial Dual-cylinder Apparatus.
    Pongsawatmanit R; Miyawaki O; Yano T
    Biosci Biotechnol Biochem; 1993 Jan; 57(7):1072-6. PubMed ID: 27280988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.