These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 26724565)

  • 1. Exact Markov chain and approximate diffusion solution for haploid genetic drift with one-way mutation.
    Hössjer O; Tyvand PA; Miloh T
    Math Biosci; 2016 Feb; 272():100-12. PubMed ID: 26724565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exact Markov chains versus diffusion theory for haploid random mating.
    Tyvand PA; Thorvaldsen S
    Math Biosci; 2010 May; 225(1):18-23. PubMed ID: 20100498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wright-Fisher model of social insects with haploid males and diploid females.
    Tyvand PA; Thorvaldsen S
    J Theor Biol; 2010 Oct; 266(3):470-8. PubMed ID: 20633564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Exact Stochastic Process of the Haploid Multi-Allelic Wright-Fisher Mutation Model.
    Noland JK; Thorvaldsen S
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(1):69-83. PubMed ID: 38010931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison and content of the Wright-Fisher model of random genetic drift, the diffusion approximation, and an intermediate model.
    Waxman D
    J Theor Biol; 2011 Jan; 269(1):79-87. PubMed ID: 20965202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fixation Probability in a Haploid-Diploid Population.
    Bessho K; Otto SP
    Genetics; 2017 Jan; 205(1):421-440. PubMed ID: 27866168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting the time until fixation of a neutral mutant in a finite population - A coalescent theory approach.
    Greenbaum G
    J Theor Biol; 2015 Sep; 380():98-102. PubMed ID: 26002994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An approximate stationary solution for multi-allele neutral diffusion with low mutation rates.
    Burden CJ; Tang Y
    Theor Popul Biol; 2016 Dec; 112():22-32. PubMed ID: 27495379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wright-Fisher diffusion bridges.
    Griffiths RC; Jenkins PA; Spanò D
    Theor Popul Biol; 2018 Jul; 122():67-77. PubMed ID: 28993198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probability distribution of haplotype frequencies under the two-locus Wright-Fisher model by diffusion approximation.
    Boitard S; Loisel P
    Theor Popul Biol; 2007 May; 71(3):380-91. PubMed ID: 17316725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Markov model of haploid random mating with given distribution of population size.
    Tyvand PA; Thorvaldsen S
    Bull Math Biol; 2006 May; 68(4):807-19. PubMed ID: 16802084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The stationary distribution of a sample from the Wright-Fisher diffusion model with general small mutation rates.
    Burden CJ; Griffiths RC
    J Math Biol; 2019 Mar; 78(4):1211-1224. PubMed ID: 30426201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exact simulation of conditioned Wright-Fisher models.
    Zhao L; Lascoux M; Waxman D
    J Theor Biol; 2014 Dec; 363():419-26. PubMed ID: 25173081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transition distribution of a sample from a Wright-Fisher diffusion with general small mutation rates.
    Burden CJ; Griffiths RC
    J Math Biol; 2019 Dec; 79(6-7):2315-2342. PubMed ID: 31531705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wright-Fisher exact solver (WFES): scalable analysis of population genetic models without simulation or diffusion theory.
    Krukov I; de Sanctis B; de Koning APJ
    Bioinformatics; 2017 May; 33(9):1416-1417. PubMed ID: 28453671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polygenic dynamics underlying the response of quantitative traits to directional selection.
    Götsch H; Bürger R
    Theor Popul Biol; 2024 Aug; 158():21-59. PubMed ID: 38677378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete numerical solution of the diffusion equation of random genetic drift.
    Zhao L; Yue X; Waxman D
    Genetics; 2013 Aug; 194(4):973-85. PubMed ID: 23749318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution of classical evolutionary models in the limit when the diffusion approximation breaks down.
    Saakian DB; Hu CK
    Phys Rev E; 2016 Oct; 94(4-1):042422. PubMed ID: 27841654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion approximations for one-locus multi-allele kin selection, mutation and random drift in group-structured populations: a unifying approach to selection models in population genetics.
    Lessard S
    J Math Biol; 2009 Nov; 59(5):659-96. PubMed ID: 19156416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An introduction to the mathematical structure of the Wright-Fisher model of population genetics.
    Tran TD; Hofrichter J; Jost J
    Theory Biosci; 2013 Jun; 132(2):73-82. PubMed ID: 23239077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.