These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 26724703)

  • 1. Development of microfluidization methods for efficient production of concentrated nanoemulsions: Comparison of single- and dual-channel microfluidizers.
    Bai L; McClements DJ
    J Colloid Interface Sci; 2016 Mar; 466():206-12. PubMed ID: 26724703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of highly concentrated oil-in-water emulsions using dual-channel microfluidization: Use of individual and mixed natural emulsifiers (saponin and lecithin).
    Luo X; Zhou Y; Bai L; Liu F; Zhang R; Zhang Z; Zheng B; Deng Y; McClements DJ
    Food Res Int; 2017 Jun; 96():103-112. PubMed ID: 28528089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of β-carotene nanoemulsion-based delivery systems using dual-channel microfluidization: Physical and chemical stability.
    Luo X; Zhou Y; Bai L; Liu F; Deng Y; McClements DJ
    J Colloid Interface Sci; 2017 Mar; 490():328-335. PubMed ID: 27914331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Concentrated Fish Oil Emulsions Using Dual-Channel Microfluidization: Impact of Droplet Concentration on Physical Properties and Lipid Oxidation.
    Liu F; Zhu Z; Ma C; Luo X; Bai L; Decker EA; Gao Y; McClements DJ
    J Agric Food Chem; 2016 Dec; 64(50):9532-9541. PubMed ID: 27936671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of process parameters in the generation of novel aspirin nanoemulsions--comparative studies between ultrasound cavitation and microfluidizer.
    Tang SY; Shridharan P; Sivakumar M
    Ultrason Sonochem; 2013 Jan; 20(1):485-97. PubMed ID: 22633626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of preparation conditions for quercetin nanoemulsions using response surface methodology.
    Karadag A; Yang X; Ozcelik B; Huang Q
    J Agric Food Chem; 2013 Mar; 61(9):2130-9. PubMed ID: 23330985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and stabilization of nanoemulsions using biosurfactants: Rhamnolipids.
    Bai L; McClements DJ
    J Colloid Interface Sci; 2016 Oct; 479():71-79. PubMed ID: 27372634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of oil-in-water emulsions manufactured by microfluidization and homogenization.
    Pinnamaneni S; Das NG; Das SK
    Pharmazie; 2003 Aug; 58(8):554-8. PubMed ID: 12967032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of Nanoemulsions from Palm-Based Tocotrienol Rich Fraction by Microfluidization.
    Goh PS; Ng MH; Choo YM; Amru NB; Chuah CH
    Molecules; 2015 Nov; 20(11):19936-46. PubMed ID: 26556328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of transparent solid lipid nanoparticles by microfluidization: influence of lipid physical state on appearance.
    Helgason T; Salminen H; Kristbergsson K; McClements DJ; Weiss J
    J Colloid Interface Sci; 2015 Jun; 448():114-22. PubMed ID: 25723787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vitamin E Encapsulation in Plant-Based Nanoemulsions Fabricated Using Dual-Channel Microfluidization: Formation, Stability, and Bioaccessibility.
    Lv S; Gu J; Zhang R; Zhang Y; Tan H; McClements DJ
    J Agric Food Chem; 2018 Oct; 66(40):10532-10542. PubMed ID: 30240207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of an emulsifier and conditions for preparing stable nanoemulsions containing the antioxidant astaxanthin.
    Kim DM; Hyun SS; Yun P; Lee CH; Byun SY
    Int J Cosmet Sci; 2012 Feb; 34(1):64-73. PubMed ID: 21883294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly stable concentrated nanoemulsions by the phase inversion composition method at elevated temperature.
    Yu L; Li C; Xu J; Hao J; Sun D
    Langmuir; 2012 Oct; 28(41):14547-52. PubMed ID: 22985401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-energy formation of edible nanoemulsions: factors influencing droplet size produced by emulsion phase inversion.
    Ostertag F; Weiss J; McClements DJ
    J Colloid Interface Sci; 2012 Dec; 388(1):95-102. PubMed ID: 22981587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vitamin E-enriched nanoemulsions formed by emulsion phase inversion: factors influencing droplet size and stability.
    Mayer S; Weiss J; McClements DJ
    J Colloid Interface Sci; 2013 Jul; 402():122-30. PubMed ID: 23660020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of industrially feasible concentrated 30% and 40% nanoemulsions for intravenous drug delivery.
    Müller RH; Harden D; Keck CM
    Drug Dev Ind Pharm; 2012 Apr; 38(4):420-30. PubMed ID: 22088169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NANOEMULSION WITH CLOTRIMAZOLE - DESIGN AND OPTIMALIZATION OF MEAN DROPLET SIZE USING MICROFLUIDIZATION TECHNIQUE.
    Sosnowska K; Szymanska E; Winnicka K
    Acta Pol Pharm; 2017 Mar; 74(2):519-526. PubMed ID: 29624257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparing glabridin-in-water nanoemulsions by high pressure homogenization with response surface methodology.
    Hsieh CW; Li PH; Lu IC; Wang TH
    J Oleo Sci; 2012; 61(9):483-9. PubMed ID: 22975782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. β-lactoglobulin stabilized nanemulsions--Formulation and process factors affecting droplet size and nanoemulsion stability.
    Ali A; Mekhloufi G; Huang N; Agnely F
    Int J Pharm; 2016 Mar; 500(1-2):291-304. PubMed ID: 26784982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physicochemical properties and antimicrobial efficacy of carvacrol nanoemulsions formed by spontaneous emulsification.
    Chang Y; McLandsborough L; McClements DJ
    J Agric Food Chem; 2013 Sep; 61(37):8906-13. PubMed ID: 23998790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.