BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 26724703)

  • 1. Development of microfluidization methods for efficient production of concentrated nanoemulsions: Comparison of single- and dual-channel microfluidizers.
    Bai L; McClements DJ
    J Colloid Interface Sci; 2016 Mar; 466():206-12. PubMed ID: 26724703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of highly concentrated oil-in-water emulsions using dual-channel microfluidization: Use of individual and mixed natural emulsifiers (saponin and lecithin).
    Luo X; Zhou Y; Bai L; Liu F; Zhang R; Zhang Z; Zheng B; Deng Y; McClements DJ
    Food Res Int; 2017 Jun; 96():103-112. PubMed ID: 28528089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of β-carotene nanoemulsion-based delivery systems using dual-channel microfluidization: Physical and chemical stability.
    Luo X; Zhou Y; Bai L; Liu F; Deng Y; McClements DJ
    J Colloid Interface Sci; 2017 Mar; 490():328-335. PubMed ID: 27914331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Concentrated Fish Oil Emulsions Using Dual-Channel Microfluidization: Impact of Droplet Concentration on Physical Properties and Lipid Oxidation.
    Liu F; Zhu Z; Ma C; Luo X; Bai L; Decker EA; Gao Y; McClements DJ
    J Agric Food Chem; 2016 Dec; 64(50):9532-9541. PubMed ID: 27936671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of process parameters in the generation of novel aspirin nanoemulsions--comparative studies between ultrasound cavitation and microfluidizer.
    Tang SY; Shridharan P; Sivakumar M
    Ultrason Sonochem; 2013 Jan; 20(1):485-97. PubMed ID: 22633626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of preparation conditions for quercetin nanoemulsions using response surface methodology.
    Karadag A; Yang X; Ozcelik B; Huang Q
    J Agric Food Chem; 2013 Mar; 61(9):2130-9. PubMed ID: 23330985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and stabilization of nanoemulsions using biosurfactants: Rhamnolipids.
    Bai L; McClements DJ
    J Colloid Interface Sci; 2016 Oct; 479():71-79. PubMed ID: 27372634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of oil-in-water emulsions manufactured by microfluidization and homogenization.
    Pinnamaneni S; Das NG; Das SK
    Pharmazie; 2003 Aug; 58(8):554-8. PubMed ID: 12967032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of Nanoemulsions from Palm-Based Tocotrienol Rich Fraction by Microfluidization.
    Goh PS; Ng MH; Choo YM; Amru NB; Chuah CH
    Molecules; 2015 Nov; 20(11):19936-46. PubMed ID: 26556328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of transparent solid lipid nanoparticles by microfluidization: influence of lipid physical state on appearance.
    Helgason T; Salminen H; Kristbergsson K; McClements DJ; Weiss J
    J Colloid Interface Sci; 2015 Jun; 448():114-22. PubMed ID: 25723787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vitamin E Encapsulation in Plant-Based Nanoemulsions Fabricated Using Dual-Channel Microfluidization: Formation, Stability, and Bioaccessibility.
    Lv S; Gu J; Zhang R; Zhang Y; Tan H; McClements DJ
    J Agric Food Chem; 2018 Oct; 66(40):10532-10542. PubMed ID: 30240207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of an emulsifier and conditions for preparing stable nanoemulsions containing the antioxidant astaxanthin.
    Kim DM; Hyun SS; Yun P; Lee CH; Byun SY
    Int J Cosmet Sci; 2012 Feb; 34(1):64-73. PubMed ID: 21883294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly stable concentrated nanoemulsions by the phase inversion composition method at elevated temperature.
    Yu L; Li C; Xu J; Hao J; Sun D
    Langmuir; 2012 Oct; 28(41):14547-52. PubMed ID: 22985401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-energy formation of edible nanoemulsions: factors influencing droplet size produced by emulsion phase inversion.
    Ostertag F; Weiss J; McClements DJ
    J Colloid Interface Sci; 2012 Dec; 388(1):95-102. PubMed ID: 22981587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vitamin E-enriched nanoemulsions formed by emulsion phase inversion: factors influencing droplet size and stability.
    Mayer S; Weiss J; McClements DJ
    J Colloid Interface Sci; 2013 Jul; 402():122-30. PubMed ID: 23660020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of industrially feasible concentrated 30% and 40% nanoemulsions for intravenous drug delivery.
    Müller RH; Harden D; Keck CM
    Drug Dev Ind Pharm; 2012 Apr; 38(4):420-30. PubMed ID: 22088169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NANOEMULSION WITH CLOTRIMAZOLE - DESIGN AND OPTIMALIZATION OF MEAN DROPLET SIZE USING MICROFLUIDIZATION TECHNIQUE.
    Sosnowska K; Szymanska E; Winnicka K
    Acta Pol Pharm; 2017 Mar; 74(2):519-526. PubMed ID: 29624257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparing glabridin-in-water nanoemulsions by high pressure homogenization with response surface methodology.
    Hsieh CW; Li PH; Lu IC; Wang TH
    J Oleo Sci; 2012; 61(9):483-9. PubMed ID: 22975782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. β-lactoglobulin stabilized nanemulsions--Formulation and process factors affecting droplet size and nanoemulsion stability.
    Ali A; Mekhloufi G; Huang N; Agnely F
    Int J Pharm; 2016 Mar; 500(1-2):291-304. PubMed ID: 26784982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physicochemical properties and antimicrobial efficacy of carvacrol nanoemulsions formed by spontaneous emulsification.
    Chang Y; McLandsborough L; McClements DJ
    J Agric Food Chem; 2013 Sep; 61(37):8906-13. PubMed ID: 23998790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.