These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
427 related articles for article (PubMed ID: 26724788)
1. Combinatorial optimization of CO2 transport and fixation to improve succinate production by promoter engineering. Yu JH; Zhu LW; Xia ST; Li HM; Tang YL; Liang XH; Chen T; Tang YJ Biotechnol Bioeng; 2016 Jul; 113(7):1531-41. PubMed ID: 26724788 [TBL] [Abstract][Full Text] [Related]
2. Collaborative regulation of CO2 transport and fixation during succinate production in Escherichia coli. Zhu LW; Zhang L; Wei LN; Li HM; Yuan ZP; Chen T; Tang YL; Liang XH; Tang YJ Sci Rep; 2015 Dec; 5():17321. PubMed ID: 26626308 [TBL] [Abstract][Full Text] [Related]
3. Improving Succinate Productivity by Engineering a Cyanobacterial CO Xiao M; Zhu X; Bi C; Ma Y; Zhang X Biotechnol J; 2017 Sep; 12(9):. PubMed ID: 28731528 [TBL] [Abstract][Full Text] [Related]
4. Increased incorporation of gaseous CO Park S; Lee JU; Cho S; Kim H; Oh HB; Pack SP; Lee J J Biotechnol; 2017 Jan; 241():101-107. PubMed ID: 27908774 [TBL] [Abstract][Full Text] [Related]
5. Targeted optimization of central carbon metabolism for engineering succinate production in Escherichia coli. Zhao Y; Wang CS; Li FF; Liu ZN; Zhao GR BMC Biotechnol; 2016 Jun; 16(1):52. PubMed ID: 27342774 [TBL] [Abstract][Full Text] [Related]
6. Activating phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in combination for improvement of succinate production. Tan Z; Zhu X; Chen J; Li Q; Zhang X Appl Environ Microbiol; 2013 Aug; 79(16):4838-44. PubMed ID: 23747698 [TBL] [Abstract][Full Text] [Related]
7. Co-expression of phosphoenolpyruvate carboxykinase and nicotinic acid phosphoribosyltransferase for succinate production in engineered Escherichia coli. Jiang M; Chen X; Liang L; Liu R; Wan Q; Wu M; Zhang H; Ma J; Chen K; Ouyang P Enzyme Microb Technol; 2014 Mar; 56():8-14. PubMed ID: 24564896 [TBL] [Abstract][Full Text] [Related]
8. Combining rational metabolic engineering and flux optimization strategies for efficient production of fumaric acid. Song CW; Lee SY Appl Microbiol Biotechnol; 2015 Oct; 99(20):8455-64. PubMed ID: 26194559 [TBL] [Abstract][Full Text] [Related]
9. Estimation of phosphoenolpyruvate carboxylation mediated by phosphoenolpyruvate carboxykinase (PCK) in engineered Escherichia coli having high ATP. Lee HJ; Kim HJ; Seo J; Na YA; Lee J; Lee JY; Kim P Enzyme Microb Technol; 2013 Jun; 53(1):13-7. PubMed ID: 23683699 [TBL] [Abstract][Full Text] [Related]
10. Current advances of succinate biosynthesis in metabolically engineered Escherichia coli. Zhu LW; Tang YJ Biotechnol Adv; 2017 Dec; 35(8):1040-1048. PubMed ID: 28939498 [TBL] [Abstract][Full Text] [Related]
11. Combinatorial pathway optimization in Escherichia coli by directed co-evolution of rate-limiting enzymes and modular pathway engineering. Lv X; Gu J; Wang F; Xie W; Liu M; Ye L; Yu H Biotechnol Bioeng; 2016 Dec; 113(12):2661-2669. PubMed ID: 27316379 [TBL] [Abstract][Full Text] [Related]
12. Application of adaptive laboratory evolution to overcome a flux limitation in an Escherichia coli production strain. Tokuyama K; Toya Y; Horinouchi T; Furusawa C; Matsuda F; Shimizu H Biotechnol Bioeng; 2018 Jun; 115(6):1542-1551. PubMed ID: 29457640 [TBL] [Abstract][Full Text] [Related]
13. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031 [TBL] [Abstract][Full Text] [Related]
14. Obtaining a Panel of Cascade Promoter-5'-UTR Complexes in Escherichia coli. Zhou S; Ding R; Chen J; Du G; Li H; Zhou J ACS Synth Biol; 2017 Jun; 6(6):1065-1075. PubMed ID: 28252945 [TBL] [Abstract][Full Text] [Related]
15. Application of an oxygen-inducible nar promoter system in metabolic engineering for production of biochemicals in Escherichia coli. Hwang HJ; Kim JW; Ju SY; Park JH; Lee PC Biotechnol Bioeng; 2017 Feb; 114(2):468-473. PubMed ID: 27543929 [TBL] [Abstract][Full Text] [Related]
16. Metabolic engineering of Escherichia coli and in silico comparing of carboxylation pathways for high succinate productivity under aerobic conditions. Yang J; Wang Z; Zhu N; Wang B; Chen T; Zhao X Microbiol Res; 2014; 169(5-6):432-40. PubMed ID: 24103861 [TBL] [Abstract][Full Text] [Related]
17. [Construction of synthetic promoters for Escherichia coli and application in the biosynthesis of cis,cis-muconic acid]. Wu Y; Zhang Y; Tu R; Liu H; Wang Q Sheng Wu Gong Cheng Xue Bao; 2013 Jun; 29(6):760-71. PubMed ID: 24063236 [TBL] [Abstract][Full Text] [Related]
18. Engineering synergetic CO Hu G; Zhou J; Chen X; Qian Y; Gao C; Guo L; Xu P; Chen W; Chen J; Li Y; Liu L Metab Eng; 2018 May; 47():496-504. PubMed ID: 29753840 [TBL] [Abstract][Full Text] [Related]
19. Alteration of the biochemical valves in the central metabolism of Escherichia coli. Liao JC; Chao YP; Patnaik R Ann N Y Acad Sci; 1994 Nov; 745():21-34. PubMed ID: 7832509 [TBL] [Abstract][Full Text] [Related]
20. Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Zhang X; Jantama K; Moore JC; Jarboe LR; Shanmugam KT; Ingram LO Proc Natl Acad Sci U S A; 2009 Dec; 106(48):20180-5. PubMed ID: 19918073 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]