These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 26725032)

  • 1. Evaluation of correlation between physical properties and ultrasonic pulse velocity of fired clay samples.
    Özkan İ; Yayla Z
    Ultrasonics; 2016 Mar; 66():4-10. PubMed ID: 26725032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of fired construction brick from high sulfate-containing fly ash with boric acid addition.
    Başpinar MS; Kahraman E; Görhan G; Demir I
    Waste Manag Res; 2010 Jan; 28(1):4-10. PubMed ID: 19423597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization potential of silica fume in fired clay bricks.
    Baspinar MS; Demir I; Orhan M
    Waste Manag Res; 2010 Feb; 28(2):149-57. PubMed ID: 19748959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defluoridation of drinking water with pottery: effect of firing temperature.
    Hauge S; Osterberg R; Bjorvatn K; Selvig KA
    Scand J Dent Res; 1994 Dec; 102(6):329-33. PubMed ID: 7871355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eco-Friendly Fired Brick Produced from Industrial Ash and Natural Clay: A Study of Waste Reuse.
    Doğan-Sağlamtimur N; Bilgil A; Szechyńska-Hebda M; Parzych S; Hebda M
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33673275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of Savannah Harbor river sediment as the primary raw material in production of fired brick.
    Mezencevova A; Yeboah NN; Burns SE; Kahn LF; Kurtis KE
    J Environ Manage; 2012 Dec; 113():128-36. PubMed ID: 23017584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Gypsum Waste Utilization on Properties and Leachability of Fired Clay Brick.
    Hamid NJA; Kadir AA; Hashar NNH; Pietrusiewicz P; Nabiałek M; Wnuk I; Gucwa M; Palutkiewicz P; Hashim AA; Sarani NA; Nio AA; Noor NM; Jez B
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34074057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volcanic Tuff as Secondary Raw Material in the Production of Clay Bricks.
    Cobîrzan N; Thalmaier G; Balog AA; Constantinescu H; Ceclan A; Nasui M
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluoride-immobilized co-processing and resource utilization of aluminum-electrolyzed spent cathode carbon in brick-fired kiln.
    Sang Y; Liu C; Yuan H; Chi Z; Ji L; Cao R; Gu Q
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):87527-87533. PubMed ID: 35809169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of kinetics of Cr(VI)-fired brick clay interaction.
    Priyantha N; Bandaranayaka A
    J Hazard Mater; 2011 Apr; 188(1-3):193-7. PubMed ID: 21330054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Construction Material Using Wastewater: An Application of Circular Economy for Mass Production of Bricks.
    Ghafoor S; Hameed A; Shah SAR; Azab M; Faheem H; Nawaz MF; Iqbal F
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Residual Mechanical Properties of Concrete Made with Crushed Clay Bricks and Roof Tiles Aggregate after Exposure to High Temperatures.
    Miličević I; Štirmer N; Banjad Pečur I
    Materials (Basel); 2016 Apr; 9(4):. PubMed ID: 28773420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recycling of marble cutting waste additives in fired clay brick structure: a statistical approach to process parameters.
    Erdogmus E; Yaras A; Sutcu M; Gencel O
    Environ Sci Pollut Res Int; 2022 Oct; 29(47):71936-71947. PubMed ID: 35608771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of ultrasonic waves with domain walls on nanocrystalline YIG.
    Murthy SR
    Ultrasonics; 2014 Feb; 54(2):479-85. PubMed ID: 23962921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of recycled glass substitution on the physical and mechanical properties of clay bricks.
    Loryuenyong V; Panyachai T; Kaewsimork K; Siritai C
    Waste Manag; 2009 Oct; 29(10):2717-21. PubMed ID: 19545990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of Limestone Waste Addition for Fired Clay Bricks.
    Thalmaier G; Cobȋrzan N; Balog AA; Constantinescu H; Ceclan A; Voinea M; Marinca TF
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation of the sintering behaviour of Waelz slag from electric arc furnace (EAF) dust recycling for use in the clay ceramics industry.
    Quijorna N; de Pedro M; Romero M; Andrés A
    J Environ Manage; 2014 Jan; 132():278-86. PubMed ID: 24321287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic evaluation of the physical and mechanical properties of granites.
    Vasconcelos G; Lourenço PB; Alves CA; Pamplona J
    Ultrasonics; 2008 Sep; 48(5):453-66. PubMed ID: 18471849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Wavelet-Based Processing method for simultaneously determining ultrasonic velocity and material thickness.
    Loosvelt M; Lasaygues P
    Ultrasonics; 2011 Apr; 51(3):325-39. PubMed ID: 21094965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic investigation on the production of clay bricks with SCBA waste.
    Viruthagiri G; Sathiya priya S; Shanmugam N; Balaji A; Balamurugan K; Gopinathan E
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Oct; 149():468-75. PubMed ID: 25978014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.