These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 26725730)

  • 1. Spatially Localized Chemical Patterns around an A + B → Oscillator Front.
    Budroni MA; Lemaigre L; Escala DM; Muñuzuri AP; De Wit A
    J Phys Chem A; 2016 Feb; 120(6):851-60. PubMed ID: 26725730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localized stationary and traveling reaction-diffusion patterns in a two-layer A+B→ oscillator system.
    Budroni MA; De Wit A
    Phys Rev E; 2016 Jun; 93(6):062207. PubMed ID: 27415255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissipative structures: From reaction-diffusion to chemo-hydrodynamic patterns.
    Budroni MA; De Wit A
    Chaos; 2017 Oct; 27(10):104617. PubMed ID: 29092422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Organized Traveling Chemo-Hydrodynamic Fingers Triggered by a Chemical Oscillator.
    Escala DM; Budroni MA; Carballido-Landeira J; De Wit A; Muñuzuri AP
    J Phys Chem Lett; 2014 Feb; 5(3):413-8. PubMed ID: 26276584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex patterns in reactive microemulsions: self-organized nanostructures?
    Epstein IR; Vanag VK
    Chaos; 2005 Dec; 15(4):047510. PubMed ID: 16396603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling chemical oscillations in heterogeneous Belousov-Zhabotinsky gels via mechanical strain.
    Yashin VV; Van Vliet KJ; Balazs AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046214. PubMed ID: 19518319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Buoyancy-Driven Chemohydrodynamic Patterns in A + B → Oscillator Two-Layer Stratifications.
    Budroni MA; Lemaigre L; Escala DM; Wit A
    Langmuir; 2023 Jan; 39(3):997-1009. PubMed ID: 36623172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Front dynamics in an oscillatory bistable Belousov-Zhabotinsky chemical reaction.
    Marts B; Martinez K; Lin AL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056223. PubMed ID: 15600744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmented waves in a reaction-diffusion-convection system.
    Rossi F; Budroni MA; Marchettini N; Carballido-Landeira J
    Chaos; 2012 Sep; 22(3):037109. PubMed ID: 23020500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition from traveling to standing waves in the 4:1 resonant Belousov-Zhabotinsky reaction.
    Marts B; Lin AL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026211. PubMed ID: 18352107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring of spatiotemporal patterns in the oscillatory chemical reactions with the infrared camera: experiments and model interpretation.
    Pekala K; Wiśniewski A; Jurczakowski R; Wiśniewski T; Wojdyga M; Orlik M
    J Phys Chem A; 2010 Aug; 114(30):7903-11. PubMed ID: 20666538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechano-chemical oscillations and waves in reactive gels.
    Yashin VV; Kuksenok O; Dayal P; Balazs AC
    Rep Prog Phys; 2012 Jun; 75(6):066601. PubMed ID: 22790650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Reaction Parameters on the Wavelength of Pulse Waves in the Belousov-Zhabotinsky Reaction-Diffusion System.
    Teng R; Ren L; Yuan L; Wang L; Gao Q; Epstein IR
    J Phys Chem A; 2019 Oct; 123(43):9292-9297. PubMed ID: 31580676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comb-like Turing patterns embedded in Hopf oscillations: Spatially localized states outside the 2:1 frequency locked region.
    Castillero PM; Yochelis A
    Chaos; 2017 Apr; 27(4):043110. PubMed ID: 28456181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oscillatory dynamics of the Belousov-Zhabotinsky system in the presence of a self-assembling nonionic polymer. Role of the reactants concentration.
    Sciascia L; Rossi F; Sbriziolo C; Liveri ML; Varsalona R
    Phys Chem Chem Phys; 2010 Oct; 12(37):11674-82. PubMed ID: 20714482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers.
    Rongy L; Goyal N; Meiburg E; De Wit A
    J Chem Phys; 2007 Sep; 127(11):114710. PubMed ID: 17887873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature control of pattern formation in the Ru(bpy)(3)(2+)-catalyzed BZ-AOT system.
    McIlwaine R; Vanag VK; Epstein IR
    Phys Chem Chem Phys; 2009 Mar; 11(10):1581-7. PubMed ID: 19240935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical-wave dynamics in a vertically oscillating fluid layer.
    Fernández-García G; Roncaglia DI; Pérez-Villar V; Muñuzuri AP; Pérez-Muñuzuri V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026204. PubMed ID: 18352100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bromide control, bifurcation and activation in the Belousov-Zhabotinsky reaction.
    Hastings HM; Sobel SG; Field RJ; Bongiovi D; Burke B; Richford D; Finzel K; Garuthara M
    J Phys Chem A; 2008 May; 112(21):4715-8. PubMed ID: 18459756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns in the Belousov-Zhabotinsky reaction in water-in-oil microemulsion induced by a temperature gradient.
    Carballido-Landeira J; Vanag VK; Epstein IR
    Phys Chem Chem Phys; 2010 Apr; 12(15):3656-65. PubMed ID: 20358062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.