These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 26725737)
1. Mechanisms underlying the cardiac pacemaker: the role of SK4 calcium-activated potassium channels. Weisbrod D; Khun SH; Bueno H; Peretz A; Attali B Acta Pharmacol Sin; 2016 Jan; 37(1):82-97. PubMed ID: 26725737 [TBL] [Abstract][Full Text] [Related]
2. SK4 Ca2+ activated K+ channel is a critical player in cardiac pacemaker derived from human embryonic stem cells. Weisbrod D; Peretz A; Ziskind A; Menaker N; Oz S; Barad L; Eliyahu S; Itskovitz-Eldor J; Dascal N; Khananshvili D; Binah O; Attali B Proc Natl Acad Sci U S A; 2013 Apr; 110(18):E1685-94. PubMed ID: 23589888 [TBL] [Abstract][Full Text] [Related]
3. Contribution of small conductance K Torrente AG; Zhang R; Wang H; Zaini A; Kim B; Yue X; Philipson KD; Goldhaber JI J Physiol; 2017 Jun; 595(12):3847-3865. PubMed ID: 28346695 [TBL] [Abstract][Full Text] [Related]
4. SK4 K Haron-Khun S; Weisbrod D; Bueno H; Yadin D; Behar J; Peretz A; Binah O; Hochhauser E; Eldar M; Yaniv Y; Arad M; Attali B EMBO Mol Med; 2017 Apr; 9(4):415-429. PubMed ID: 28219898 [TBL] [Abstract][Full Text] [Related]
5. Overexpression of the medium‑conductance calcium‑activated potassium channel (SK4) and the HCN2 channel to generate a biological pacemaker. Zhao H; Yang M; Wang F; Yang A; Zhao Q; Wang X; Tang Y; Wang T; Huang C Mol Med Rep; 2019 Oct; 20(4):3406-3414. PubMed ID: 31432175 [TBL] [Abstract][Full Text] [Related]
6. Adipose‑derived stem cells overexpressing SK4 calcium‑activated potassium channel generate biological pacemakers. Yang M; Zhao Q; Zhao H; Yang A; Wang F; Wang X; Tang Y; Huang C Int J Mol Med; 2019 Dec; 44(6):2103-2112. PubMed ID: 31638180 [TBL] [Abstract][Full Text] [Related]
7. Modulation of calcium-activated potassium channels induces cardiogenesis of pluripotent stem cells and enrichment of pacemaker-like cells. Kleger A; Seufferlein T; Malan D; Tischendorf M; Storch A; Wolheim A; Latz S; Protze S; Porzner M; Proepper C; Brunner C; Katz SF; Varma Pusapati G; Bullinger L; Franz WM; Koehntop R; Giehl K; Spyrantis A; Wittekindt O; Lin Q; Zenke M; Fleischmann BK; Wartenberg M; Wobus AM; Boeckers TM; Liebau S Circulation; 2010 Nov; 122(18):1823-36. PubMed ID: 20956206 [TBL] [Abstract][Full Text] [Related]
8. Ionic mechanisms of pacemaker activity in spontaneously contracting atrial HL-1 cells. Yang Z; Murray KT J Cardiovasc Pharmacol; 2011 Jan; 57(1):28-36. PubMed ID: 20881602 [TBL] [Abstract][Full Text] [Related]
9. Single cells isolated from human sinoatrial node: action potentials and numerical reconstruction of pacemaker current. Verkerk AO; van Borren MM; Peters RJ; Broekhuis E; Lam KY; Coronel R; de Bakker JM; Tan HL; Wilders R Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():904-7. PubMed ID: 18002103 [TBL] [Abstract][Full Text] [Related]
10. Computational analysis of the human sinus node action potential: model development and effects of mutations. Fabbri A; Fantini M; Wilders R; Severi S J Physiol; 2017 Apr; 595(7):2365-2396. PubMed ID: 28185290 [TBL] [Abstract][Full Text] [Related]
11. Sustained inward current during pacemaker depolarization in mammalian sinoatrial node cells. Mitsuiye T; Shinagawa Y; Noma A Circ Res; 2000 Jul; 87(2):88-91. PubMed ID: 10903990 [TBL] [Abstract][Full Text] [Related]
13. Sino-atrial nodal cells of mammalian hearts: ionic currents and gene expression of pacemaker ionic channels. Satoh H J Smooth Muscle Res; 2003 Oct; 39(5):175-93. PubMed ID: 14695028 [TBL] [Abstract][Full Text] [Related]
14. Calcium transient and sodium-calcium exchange current in human versus rabbit sinoatrial node pacemaker cells. Verkerk AO; van Borren MM; Wilders R ScientificWorldJournal; 2013; 2013():507872. PubMed ID: 23606816 [TBL] [Abstract][Full Text] [Related]
15. Frequency-Dependent Properties of the Hyperpolarization-Activated Cation Current, I Hu W; Clark RB; Giles WR; Kondo C; Zhang H Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457119 [TBL] [Abstract][Full Text] [Related]
17. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Protze SI; Liu J; Nussinovitch U; Ohana L; Backx PH; Gepstein L; Keller GM Nat Biotechnol; 2017 Jan; 35(1):56-68. PubMed ID: 27941801 [TBL] [Abstract][Full Text] [Related]
18. BK channels regulate sinoatrial node firing rate and cardiac pacing in vivo. Lai MH; Wu Y; Gao Z; Anderson ME; Dalziel JE; Meredith AL Am J Physiol Heart Circ Physiol; 2014 Nov; 307(9):H1327-38. PubMed ID: 25172903 [TBL] [Abstract][Full Text] [Related]
19. Role of sarcolemmal ATP-sensitive K+ channels in the regulation of sinoatrial node automaticity: an evaluation using Kir6.2-deficient mice. Fukuzaki K; Sato T; Miki T; Seino S; Nakaya H J Physiol; 2008 Jun; 586(11):2767-78. PubMed ID: 18420708 [TBL] [Abstract][Full Text] [Related]
20. Burst pacemaker activity of the sinoatrial node in sodium-calcium exchanger knockout mice. Torrente AG; Zhang R; Zaini A; Giani JF; Kang J; Lamp ST; Philipson KD; Goldhaber JI Proc Natl Acad Sci U S A; 2015 Aug; 112(31):9769-74. PubMed ID: 26195795 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]