These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26726383)

  • 41. Ordered mesoporous carbon electrodes for Li-O2 batteries.
    Park JB; Lee J; Yoon CS; Sun YK
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13426-31. PubMed ID: 24236914
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Macroscopic Carbon Nanotube Structures for Lithium Batteries.
    Luo Y; Wang K; Li Q; Fan S; Wang J
    Small; 2020 Apr; 16(15):e1902719. PubMed ID: 31565872
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molybdenum nitride based hybrid cathode for rechargeable lithium-O2 batteries.
    Dong S; Chen X; Zhang K; Gu L; Zhang L; Zhou X; Li L; Liu Z; Han P; Xu H; Yao J; Zhang C; Zhang X; Shang C; Cui G; Chen L
    Chem Commun (Camb); 2011 Oct; 47(40):11291-3. PubMed ID: 21927745
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Free-Standing Sulfur/Nitrogen-Doped Carbon Nanotube Electrode for High-Performance Lithium/Sulfur Batteries.
    Zhao Y; Yin F; Zhang Y; Zhang C; Mentbayeva A; Umirov N; Xie H; Bakenov Z
    Nanoscale Res Lett; 2015 Dec; 10(1):450. PubMed ID: 26586150
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Free-Standing Porous Carbon Nanofiber/Carbon Nanotube Film as Sulfur Immobilizer with High Areal Capacity for Lithium-Sulfur Battery.
    Zhang YZ; Zhang Z; Liu S; Li GR; Gao XP
    ACS Appl Mater Interfaces; 2018 Mar; 10(10):8749-8757. PubMed ID: 29469561
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coaxial carbon/metal oxide/aligned carbon nanotube arrays as high-performance anodes for lithium ion batteries.
    Lou F; Zhou H; Tran TD; Melandsø Buan ME; Vullum-Bruer F; Rønning M; Walmsley JC; Chen D
    ChemSusChem; 2014 May; 7(5):1335-46. PubMed ID: 24578068
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries.
    Jia X; Chen Z; Cui X; Peng Y; Wang X; Wang G; Wei F; Lu Y
    ACS Nano; 2012 Nov; 6(11):9911-9. PubMed ID: 23046380
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reduced graphene oxide coated porous carbon-sulfur nanofiber as a flexible paper electrode for lithium-sulfur batteries.
    Chu RX; Lin J; Wu CQ; Zheng J; Chen YL; Zhang J; Han RH; Zhang Y; Guo H
    Nanoscale; 2017 Jul; 9(26):9129-9138. PubMed ID: 28644506
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Sheet-like Carbon Matrix Hosted Sulfur as Cathode for High-performance Lithium-Sulfur Batteries.
    Lu S; Chen Y; Zhou J; Wang Z; Wu X; Gu J; Zhang X; Pang A; Jiao Z; Jiang L
    Sci Rep; 2016 Feb; 6():20445. PubMed ID: 26842015
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Flexible lithium-oxygen battery based on a recoverable cathode.
    Liu QC; Xu JJ; Xu D; Zhang XB
    Nat Commun; 2015 Aug; 6():7892. PubMed ID: 26235205
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures.
    Li Y; Fu KK; Chen C; Luo W; Gao T; Xu S; Dai J; Pastel G; Wang Y; Liu B; Song J; Chen Y; Yang C; Hu L
    ACS Nano; 2017 May; 11(5):4801-4807. PubMed ID: 28485923
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nitrogen enriched mesoporous carbon as a high capacity cathode in lithium-oxygen batteries.
    Nie H; Zhang H; Zhang Y; Liu T; Li J; Lai Q
    Nanoscale; 2013 Sep; 5(18):8484-7. PubMed ID: 23897395
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In situ synthesis of porous Si dispersed in carbon nanotube intertwined expanded graphite for high-energy lithium-ion batteries.
    Xu T; Wang D; Qiu P; Zhang J; Wang Q; Xia B; Xie X
    Nanoscale; 2018 Sep; 10(35):16638-16644. PubMed ID: 30155540
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis of hierarchical porous δ-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries.
    Zhang J; Luan Y; Lyu Z; Wang L; Xu L; Yuan K; Pan F; Lai M; Liu Z; Chen W
    Nanoscale; 2015 Sep; 7(36):14881-8. PubMed ID: 26290962
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Two-Dimensional Vanadium Carbide (MXene) as a High-Capacity Cathode Material for Rechargeable Aluminum Batteries.
    VahidMohammadi A; Hadjikhani A; Shahbazmohamadi S; Beidaghi M
    ACS Nano; 2017 Nov; 11(11):11135-11144. PubMed ID: 29039915
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries.
    Han H; Song T; Lee EK; Devadoss A; Jeon Y; Ha J; Chung YC; Choi YM; Jung YG; Paik U
    ACS Nano; 2012 Sep; 6(9):8308-15. PubMed ID: 22935008
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A high areal capacity lithium-sulfur battery cathode prepared by site-selective vapor infiltration of hierarchical carbon nanotube arrays.
    Carter R; Davis B; Oakes L; Maschmann MR; Pint CL
    Nanoscale; 2017 Oct; 9(39):15018-15026. PubMed ID: 28959999
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis of Three-Dimensional Nanoporous Li-Rich Layered Cathode Oxides for High Volumetric and Power Energy Density Lithium-Ion Batteries.
    Qiu B; Yin C; Xia Y; Liu Z
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3661-3666. PubMed ID: 28094919
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In Situ-Grown ZnCo2O4 on Single-Walled Carbon Nanotubes as Air Electrode Materials for Rechargeable Lithium-Oxygen Batteries.
    Liu B; Xu W; Yan P; Bhattacharya P; Cao R; Bowden ME; Engelhard MH; Wang CM; Zhang JG
    ChemSusChem; 2015 Nov; 8(21):3697-703. PubMed ID: 26457378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.