These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 26726434)
1. Dependence of Impedance Measurement Sensitivity of Cell Growth on Sensing Area of Circular Interdigitated Electrode. Park J; Hwang KS; Cho S J Nanosci Nanotechnol; 2015 Oct; 15(10):7886-90. PubMed ID: 26726434 [TBL] [Abstract][Full Text] [Related]
2. Electrical impedance characterization of cell growth on interdigitated microelectrode array. Lee GH; Pyun JC; Cho S J Nanosci Nanotechnol; 2014 Nov; 14(11):8342-6. PubMed ID: 25958525 [TBL] [Abstract][Full Text] [Related]
3. Effects of electrode geometry and cell location on single-cell impedance measurement. Wang JW; Wang MH; Jang LS Biosens Bioelectron; 2010 Feb; 25(6):1271-6. PubMed ID: 19926465 [TBL] [Abstract][Full Text] [Related]
4. Parylene-C-Coated indium tin oxide electrodes for the optical- and electrical-impedance characterization of cells. Kim S; Cho S J Nanosci Nanotechnol; 2012 Jul; 12(7):5830-4. PubMed ID: 22966664 [TBL] [Abstract][Full Text] [Related]
5. Interdigitated aluminium and titanium sensors for assessing epithelial barrier functionality by electric cell-substrate impedance spectroscopy (ECIS). Schmiedinger T; Partel S; Lechleitner T; Eiter O; Hekl D; Kaseman S; Lukas P; Edlinger J; Lechner J; Seppi T Biomed Microdevices; 2020 Apr; 22(2):30. PubMed ID: 32328801 [TBL] [Abstract][Full Text] [Related]
6. Nanocrystalline diamond-based impedance sensors for real-time monitoring of adipose tissue-derived stem cells. Procházka V; Matějka R; Ižák T; Szabó O; Štěpanovská J; Filová E; Bačáková L; Jirásek V; Kromka A Colloids Surf B Biointerfaces; 2019 May; 177():130-136. PubMed ID: 30716698 [TBL] [Abstract][Full Text] [Related]
7. Electrical Impedance Monitoring of C2C12 Myoblast Differentiation on an Indium Tin Oxide Electrode. Park I; Hong Y; Jun YH; Lee GY; Jun HS; Pyun JC; Choi JW; Cho S Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27929401 [TBL] [Abstract][Full Text] [Related]
8. Influence of DNA concentration on the interfacial electrode impedance. Cho S; Oh Y; Ahn SM J Nanosci Nanotechnol; 2013 Nov; 13(11):7291-4. PubMed ID: 24245245 [TBL] [Abstract][Full Text] [Related]
9. The Influence of Electrode Design on Detecting the Effects of Ferric Ammonium Citrate (FAC) on Pre-Osteoblast through Electrical Cell-Substrate Impedance Sensing (ECIS). Zhang Z; Yuan X; Guo H; Shang P Biosensors (Basel); 2023 Feb; 13(3):. PubMed ID: 36979534 [TBL] [Abstract][Full Text] [Related]
10. Modeling and development of screen-printed impedance biosensor for cytotoxicity studies of lung carcinoma cells. Mansor AFM; Ibrahim I; Zainuddin AA; Voiculescu I; Nordin AN Med Biol Eng Comput; 2018 Jan; 56(1):173-181. PubMed ID: 29247387 [TBL] [Abstract][Full Text] [Related]
11. Real-Time Impedance Monitoring of Epithelial Cultures with Inkjet-Printed Interdigitated-Electrode Sensors. Mojena-Medina D; Hubl M; Bäuscher M; Jorcano JL; Ngo HD; Acedo P Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33049961 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors. Wang L; Wang H; Wang L; Mitchelson K; Yu Z; Cheng J Biosens Bioelectron; 2008 Sep; 24(1):14-21. PubMed ID: 18511255 [TBL] [Abstract][Full Text] [Related]
13. Electrical impedance simulation and characterization of cell growth using the Fricke model. Cho S J Nanosci Nanotechnol; 2012 Jul; 12(7):5228-32. PubMed ID: 22966550 [TBL] [Abstract][Full Text] [Related]
14. Electrical impedance characterization of adipose tissue-derived stem cells cultured on indium tin oxide electrodes. Jun HS; Choi W; Kim JY; Cho S J Biomed Nanotechnol; 2013 Apr; 9(4):699-702. PubMed ID: 23621031 [TBL] [Abstract][Full Text] [Related]
15. Effect of electrode material on the sensitivity of interdigitated electrodes used for Electrical Cell-Substrate Impedance Sensing technology. Martinez J; Montalibet A; McAdams E; Faivre M; Ferrigno R Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():813-816. PubMed ID: 29059996 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical impedance measurement of a carbon nanotube probe electrode. Inaba A; Takei Y; Kan T; Matsumoto K; Shimoyama I Nanotechnology; 2012 Dec; 23(48):485302. PubMed ID: 23124171 [TBL] [Abstract][Full Text] [Related]
17. Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells. Mamouni J; Yang L Biomed Microdevices; 2011 Dec; 13(6):1075-88. PubMed ID: 21833766 [TBL] [Abstract][Full Text] [Related]
19. Correlation of the impedance and effective electrode area of doped PEDOT modified electrodes for brain-machine interfaces. Harris AR; Molino PJ; Kapsa RM; Clark GM; Paolini AG; Wallace GG Analyst; 2015 May; 140(9):3164-74. PubMed ID: 25773879 [TBL] [Abstract][Full Text] [Related]
20. New equivalent-electrical circuit model and a practical measurement method for human body impedance. Chinen K; Kinjo I; Zamami A; Irei K; Nagayama K Biomed Mater Eng; 2015; 26 Suppl 1():S779-86. PubMed ID: 26406074 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]