These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 26726438)
1. Cell-Adhesive Matrices Composed of RGD Peptide-Displaying M13 Bacteriophage/Poly(lactic-co-glycolic acid) Nanofibers Beneficial to Myoblast Differentiation. Shin YC; Lee JH; Jin L; Kim MJ; Kim C; Hong SW; Oh JW; Han DW J Nanosci Nanotechnol; 2015 Oct; 15(10):7907-12. PubMed ID: 26726438 [TBL] [Abstract][Full Text] [Related]
2. Cell-adhesive RGD peptide-displaying M13 bacteriophage/PLGA nanofiber matrices for growth of fibroblasts. Shin YC; Lee JH; Jin L; Kim MJ; Oh JW; Kim TW; Han DW Biomater Res; 2014; 18():14. PubMed ID: 26331065 [TBL] [Abstract][Full Text] [Related]
3. Ternary Aligned Nanofibers of RGD Peptide-Displaying M13 Bacteriophage/PLGA/Graphene Oxide for Facilitated Myogenesis. Shin YC; Kim C; Song SJ; Jun S; Kim CS; Hong SW; Hyon SH; Han DW; Oh JW Nanotheranostics; 2018; 2(2):144-156. PubMed ID: 29577018 [TBL] [Abstract][Full Text] [Related]
4. Biomimetic Hybrid Nanofiber Sheets Composed of RGD Peptide-Decorated PLGA as Cell-Adhesive Substrates. Shin YC; Lee JH; Kim MJ; Park JH; Kim SE; Kim JS; Oh JW; Han DW J Funct Biomater; 2015 May; 6(2):367-78. PubMed ID: 26034884 [TBL] [Abstract][Full Text] [Related]
5. Stimulating effect of graphene oxide on myogenesis of C2C12 myoblasts on RGD peptide-decorated PLGA nanofiber matrices. Shin YC; Lee JH; Kim MJ; Hong SW; Kim B; Hyun JK; Choi YS; Park JC; Han DW J Biol Eng; 2015; 9():22. PubMed ID: 26609319 [TBL] [Abstract][Full Text] [Related]
6. Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices. Shin YC; Lee JH; Jin L; Kim MJ; Kim YJ; Hyun JK; Jung TG; Hong SW; Han DW J Nanobiotechnology; 2015 Mar; 13():21. PubMed ID: 25886153 [TBL] [Abstract][Full Text] [Related]
7. RGD peptide and graphene oxide co-functionalized PLGA nanofiber scaffolds for vascular tissue engineering. Shin YC; Kim J; Kim SE; Song SJ; Hong SW; Oh JW; Lee J; Park JC; Hyon SH; Han DW Regen Biomater; 2017 Jun; 4(3):159-166. PubMed ID: 28740639 [TBL] [Abstract][Full Text] [Related]
8. Intra-abdominal transplantation of PLGA/PCL/M13 phage electrospun scaffold induces self-assembly of lymphoid tissue-like structure. Safari Z; Sadeghizadeh M; Zavaran Hosseini A; Hazrati A; Soudi S Biomed Pharmacother; 2024 Apr; 173():116382. PubMed ID: 38460368 [TBL] [Abstract][Full Text] [Related]
9. The cellular response of nerve cells on poly-l-lysine coated PLGA-MWCNTs aligned nanofibers under electrical stimulation. Wang J; Tian L; Chen N; Ramakrishna S; Mo X Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():715-726. PubMed ID: 30033306 [TBL] [Abstract][Full Text] [Related]
10. Core-shell PLGA/collagen nanofibers loaded with recombinant FN/CDHs as bone tissue engineering scaffolds. Wang J; Cui X; Zhou Y; Xiang Q Connect Tissue Res; 2014 Aug; 55(4):292-8. PubMed ID: 24844413 [TBL] [Abstract][Full Text] [Related]
11. Influence of VEGF/BMP-2 on the proliferation and osteogenetic differentiation of rat bone mesenchymal stem cells on PLGA/gelatin composite scaffold. An G; Zhang WB; Ma DK; Lu B; Wei GJ; Guang Y; Ru CH; Wang YS Eur Rev Med Pharmacol Sci; 2017 May; 21(10):2316-2328. PubMed ID: 28617560 [TBL] [Abstract][Full Text] [Related]
12. Modified Filamentous Bacteriophage as a Scaffold for Carbon Nanofiber. Szot-Karpińska K; Golec P; Leśniewski A; Pałys B; Marken F; Niedziółka-Jönsson J; Węgrzyn G; Łoś M Bioconjug Chem; 2016 Dec; 27(12):2900-2910. PubMed ID: 27748604 [TBL] [Abstract][Full Text] [Related]
13. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide. Shao W; He J; Sang F; Wang Q; Chen L; Cui S; Ding B Mater Sci Eng C Mater Biol Appl; 2016 May; 62():823-34. PubMed ID: 26952489 [TBL] [Abstract][Full Text] [Related]
14. Engineering of M13 Bacteriophage for Development of Tissue Engineering Materials. Jin HE; Lee SW Methods Mol Biol; 2018; 1776():487-502. PubMed ID: 29869262 [TBL] [Abstract][Full Text] [Related]
15. Effect of Hierarchical Scaffold Consisting of Aligned dECM Nanofibers and Poly(lactide- Lee H; Kim W; Lee J; Yoo JJ; Kim GH; Lee SJ ACS Appl Mater Interfaces; 2019 Oct; 11(43):39449-39458. PubMed ID: 31584255 [TBL] [Abstract][Full Text] [Related]
16. Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation. Ku SH; Lee SH; Park CB Biomaterials; 2012 Sep; 33(26):6098-104. PubMed ID: 22681977 [TBL] [Abstract][Full Text] [Related]
17. Biocompatibility of electrospun halloysite nanotube-doped poly(lactic-co-glycolic acid) composite nanofibers. Qi R; Cao X; Shen M; Guo R; Yu J; Shi X J Biomater Sci Polym Ed; 2012; 23(1-4):299-313. PubMed ID: 21244744 [TBL] [Abstract][Full Text] [Related]
18. Phage as versatile nanoink for printing 3-D cell-laden scaffolds. Lee DY; Lee H; Kim Y; Yoo SY; Chung WJ; Kim G Acta Biomater; 2016 Jan; 29():112-124. PubMed ID: 26441128 [TBL] [Abstract][Full Text] [Related]
19. Biomineralized poly (l-lactic-co-glycolic acid)-tussah silk fibroin nanofiber fabric with hierarchical architecture as a scaffold for bone tissue engineering. Gao Y; Shao W; Qian W; He J; Zhou Y; Qi K; Wang L; Cui S; Wang R Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():195-207. PubMed ID: 29519429 [TBL] [Abstract][Full Text] [Related]