These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 26726473)

  • 21. Exciton Formation Entropy Changes in Transition Metal Dichalcogenide Atomic Layers.
    Rice Q; Tabibi B; Seo FJ
    J Nanosci Nanotechnol; 2018 Mar; 18(3):2018-2020. PubMed ID: 29448703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phonon Interaction and Phase Transition in Single Formamidinium Lead Bromide Quantum Dots.
    Pfingsten O; Klein J; Protesescu L; Bodnarchuk MI; Kovalenko MV; Bacher G
    Nano Lett; 2018 Jul; 18(7):4440-4446. PubMed ID: 29916252
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study of the Electron-Phonon Coupling in PbS/MnTe Quantum Dots Based on Temperature-Dependent Photoluminescence.
    Halim ND; Zaini MS; Talib ZA; Liew JYC; Kamarudin MA
    Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334735
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Color-tunable emission of quantum dots via strong exciton-plasmon coupling in nanoporous gold structure at room temperature.
    Zhao X; Chen L; Chen J; Shi W; Liu F
    Opt Express; 2016 Sep; 24(18):20219-27. PubMed ID: 27607629
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly sensitive and selective detection of phosphate using novel highly photoluminescent water-soluble Mn-doped ZnTe/ZnSe quantum dots.
    Song Y; Li Y; Liu Y; Su X; Ma Q
    Talanta; 2015 Nov; 144():680-5. PubMed ID: 26452877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emission properties of colloidal quantum dots on polyelectrolyte multilayers.
    Komarala VK; Rakovich YP; Bradley AL; Byrne SJ; Corr SA; Gun'ko YK
    Nanotechnology; 2006 Aug; 17(16):4117-22. PubMed ID: 21727547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures.
    Kim S; Fisher B; Eisler HJ; Bawendi M
    J Am Chem Soc; 2003 Sep; 125(38):11466-7. PubMed ID: 13129327
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface-state-mediated charge-transfer dynamics in CdTe/CdSe core-shell quantum dots.
    Rawalekar S; Kaniyankandy S; Verma S; Ghosh HN
    Chemphyschem; 2011 Jun; 12(9):1729-35. PubMed ID: 21567706
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermal luminescence quenching of amine-functionalized silicon quantum dots: a pH and wavelength-dependent study.
    Chatterjee S; Mukherjee TK
    Phys Chem Chem Phys; 2015 Oct; 17(37):24078-85. PubMed ID: 26316306
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monolithic ZnTe-based pillar microcavities containing CdTe quantum dots.
    Kruse C; Pacuski W; Jakubczyk T; Kobak J; Gaj JA; Frank K; Schowalter M; Rosenauer A; Florian M; Jahnke F; Hommel D
    Nanotechnology; 2011 Jul; 22(28):285204. PubMed ID: 21654032
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recombination dynamics in CdTe/CdSe type-II quantum dots.
    Wang CH; Chen TT; Chen YF; Ho ML; Lai CW; Chou PT
    Nanotechnology; 2008 Mar; 19(11):115702. PubMed ID: 21730562
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Luminescence temperature antiquenching of water-soluble CdTe quantum dots: role of the solvent.
    Wuister SF; de Mello Donegá C; Meijerink A
    J Am Chem Soc; 2004 Aug; 126(33):10397-402. PubMed ID: 15315455
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synchronous determination of mercury (II) and copper (II) based on quantum dots-multilayer film.
    Ma Q; Ha E; Yang F; Su X
    Anal Chim Acta; 2011 Sep; 701(1):60-5. PubMed ID: 21763809
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Characterization of biocompatible CdTe/znte quantum dots and its application in cell labeling].
    Liu X; Chen DN; Qu JL; Yang JT; Luo YX; Roy I; Wang XM; Lin XT; Zhong L; Prasad NP; Xu GX; Niu HB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 May; 30(5):1290-4. PubMed ID: 20672620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A size dependent discontinuous decay rate for the exciton emission in ZnO quantum dots.
    Jacobsson TJ; Viarbitskaya S; Mukhtar E; Edvinsson T
    Phys Chem Chem Phys; 2014 Jul; 16(27):13849-57. PubMed ID: 24658340
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly sensitive gaseous formaldehyde sensor with CdTe quantum dots multilayer films.
    Ma Q; Cui H; Su X
    Biosens Bioelectron; 2009 Dec; 25(4):839-44. PubMed ID: 19765971
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modification of CdTe quantum dots as temperature-insensitive bioprobes.
    Wang JH; Wang HQ; Li YQ; Zhang HL; Li XQ; Hua XF; Cao YC; Huang ZL; Zhao YD
    Talanta; 2008 Jan; 74(4):724-9. PubMed ID: 18371700
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction and energy transfer studies between bovine serum albumin and CdTe quantum dots conjugates: CdTe QDs as energy acceptor probes.
    Kotresh MG; Inamdar LS; Shivkumar MA; Adarsh KS; Jagatap BN; Mulimani BG; Advirao GM; Inamdar SR
    Luminescence; 2017 Jun; 32(4):631-639. PubMed ID: 27808463
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study on the interaction of CdTe quantum dots with coumaric acid and caffeic acid based on fluorescence reversible tune.
    Fan X; Liu S; He Y
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):23-30. PubMed ID: 21816585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exciton Recombination, Energy-, and Charge Transfer in Single- and Multilayer Quantum-Dot Films on Silver Plasmonic Resonators.
    Shin T; Cho KS; Yun DJ; Kim J; Li XS; Moon ES; Baik CW; Il Kim S; Kim M; Choi JH; Park GS; Shin JK; Hwang S; Jung TS
    Sci Rep; 2016 May; 6():26204. PubMed ID: 27184469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.