These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 26726490)

  • 1. Disulfide-Containing Crosslinked Polyaniline Cathode for Rechargeable Battery.
    Lee JM; Jung YJ; Lee AR; Ha JS; Jo NJ
    J Nanosci Nanotechnol; 2015 Oct; 15(10):8211-6. PubMed ID: 26726490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer Nanocomposite Electrode Consisting of Polyaniline and Modified Multi-Walled Carbon Nanotube for Rechargeable Battery.
    Ha JS; Lee JM; Lee HR; Huh P; Jo NJ
    J Nanosci Nanotechnol; 2015 Nov; 15(11):8977-83. PubMed ID: 26726628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the degradation mechanism of rechargeable lithium/sulfur cells: a comprehensive study of the sulfur-graphene oxide cathode after discharge-charge cycling.
    Feng X; Song MK; Stolte WC; Gardenghi D; Zhang D; Sun X; Zhu J; Cairns EJ; Guo J
    Phys Chem Chem Phys; 2014 Aug; 16(32):16931-40. PubMed ID: 24781200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Ternary Polyaniline/Active Carbon/Lithium Iron Phosphate Composite as Cathode Material for Lithium Ion Battery.
    Wang X; Zhang W; Huang Y; Xia T; Lian Y
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6494-7. PubMed ID: 27427742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High sulfur-containing carbon polysulfide polymer as a novel cathode material for lithium-sulfur battery.
    Zhang Y; Peng Y; Wang Y; Li J; Li H; Zeng J; Wang J; Hwang BJ; Zhao J
    Sci Rep; 2017 Sep; 7(1):11386. PubMed ID: 28900260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Facile Bottom-Up Approach to Construct Hybrid Flexible Cathode Scaffold for High-Performance Lithium-Sulfur Batteries.
    Ghosh A; Manjunatha R; Kumar R; Mitra S
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33775-33785. PubMed ID: 27960357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conjugated System of PEDOT:PSS-Induced Self-Doped PANI for Flexible Zinc-Ion Batteries with Enhanced Capacity and Cyclability.
    Liu Y; Xie L; Zhang W; Dai Z; Wei W; Luo S; Chen X; Chen W; Rao F; Wang L; Huang Y
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30943-30952. PubMed ID: 31364840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical performance of 2D polyaniline anchored CuS/Graphene nano-active composite as anode material for lithium-ion battery.
    Iqbal S; Bahadur A; Saeed A; Zhou K; Shoaib M; Waqas M
    J Colloid Interface Sci; 2017 Sep; 502():16-23. PubMed ID: 28475938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanically exfoliated MoS
    Ansari SA; Fouad H; Ansari SG; Sk MP; Cho MH
    J Colloid Interface Sci; 2017 Oct; 504():276-282. PubMed ID: 28551522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supercapacitor Electrodes Based on High-Purity Electrospun Polyaniline and Polyaniline-Carbon Nanotube Nanofibers.
    Simotwo SK; DelRe C; Kalra V
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21261-9. PubMed ID: 27467445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical study of specially designed graphene-Fe
    Bahadur A; Iqbal S; Shoaib M; Saeed A
    Dalton Trans; 2018 Oct; 47(42):15031-15037. PubMed ID: 30303235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of polyaniline-sulfur composites with different nanostructures
    Wang J; Zhang S
    RSC Adv; 2020 Mar; 10(19):11455-11462. PubMed ID: 35495335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibrous polyaniline@manganese oxide nanocomposites as supercapacitor electrode materials and cathode catalysts for improved power production in microbial fuel cells.
    Ansari SA; Parveen N; Han TH; Ansari MO; Cho MH
    Phys Chem Chem Phys; 2016 Apr; 18(13):9053-60. PubMed ID: 26967202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encapsulation of S/SWNT with PANI web for enhanced rate and cycle performance in lithium sulfur batteries.
    Kim JH; Fu K; Choi J; Kil K; Kim J; Han X; Hu L; Paik U
    Sci Rep; 2015 Mar; 5():8946. PubMed ID: 25752298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conducting Polymer Coated Graphene Oxide Electrode for Rechargeable Lithium-Sulfur Batteries.
    Lee HY; Jung Y; Kim S
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2692-5. PubMed ID: 27455691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nontraditional, Safe, High Voltage Rechargeable Cells of Long Cycle Life.
    Braga MH; M Subramaniyam C; Murchison AJ; Goodenough JB
    J Am Chem Soc; 2018 May; 140(20):6343-6352. PubMed ID: 29688709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemically oxidized electronic and ionic conducting nanostructured block copolymers for lithium battery electrodes.
    Patel SN; Javier AE; Balsara NP
    ACS Nano; 2013 Jul; 7(7):6056-68. PubMed ID: 23789816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge storage in polymer acid-doped polyaniline-based layer-by-layer electrodes.
    Jeon JW; O'Neal J; Shao L; Lutkenhaus JL
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10127-36. PubMed ID: 24060459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.